Artículo

Torasso, N.; Trupp, F.; Arias Durán, A.; D'Accorso, N.; Grondona, D.; Goyanes, S."Superhydrophobic plasma polymerized nanosponge with high oil sorption capacity" (2019) Plasma Processes and Polymers. 16(3)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Oil spills in water cause environmental and economic disasters. Herein, a superhydrophobic and oleophilic carbonaceous nanosponge (CN) with high adsorption capacity for selective oil removal from water was developed. It was grown by plasma polymerization of commercial acetylene in a radio frequency glow discharge (RFGD), a single-step, scalable technique. The CN is a porous network of spherical nanoparticles with a broad pore size distribution. It adsorbs 33 times its own weight of light crude oil, with null water adsorption in shaking conditions (ASTM F726-12). Because the CN could be used under sunlight exposure, the effect of UV light irradiation was studied. Potential applications of the CN arise, as it can be deposited on many substrates and change their wetting properties. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Superhydrophobic plasma polymerized nanosponge with high oil sorption capacity
Autor:Torasso, N.; Trupp, F.; Arias Durán, A.; D'Accorso, N.; Grondona, D.; Goyanes, S.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Instituto de Física de Buenos Aires (IFIBA-CONICET), Ciudad Universitaria (C1428EHA), Ciudad Autónoma de Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Física del Plasma (INFIP), Ciudad Universitaria (C1428EHA), Ciudad Autónoma de Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
Departamento de Química Orgánica, FCEN - UBA, Ciudad Universitaria (C1428EHA), Ciudad Autónoma de Buenos Aires, Argentina
CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEN - UBA, Ciudad Universitaria (C1428EHA), Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:hydrocarbons; hydrophobic; nanostructures; oleophilic; RFGD; UV-irradiation; Crude oil; Glow discharges; Hydrocarbons; Hydrophobicity; Irradiation; Nanostructures; Oil spills; Pore size; High adsorption capacity; hydrophobic; Oleophilic; Radio frequency glow discharge; RFGD; Spherical nanoparticles; UV irradiation; UV-light irradiation; Plasma polymerization
Año:2019
Volumen:16
Número:3
DOI: http://dx.doi.org/10.1002/ppap.201800158
Handle:http://hdl.handle.net/20.500.12110/paper_16128850_v16_n3_p_Torasso
Título revista:Plasma Processes and Polymers
Título revista abreviado:Plasma Processes Polym.
ISSN:16128850
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16128850_v16_n3_p_Torasso

Referencias:

  • Wu, D., Fang, L., Qin, Y., Wu, W., Mao, C., Zhu, H., (2014) Mar. Pollut. Bull, 84, p. 263
  • Beyer, J., Trannum, H.C., Bakke, T., Hodson, P.V., Collier, T.K., (2016) Mar. Pollut. Bull, 110, p. 28
  • Fingas, M., (2013) The Basics of Oil Spill Cleanup, , 3rd ed.,, CRC Press, Boca Raton
  • Ghaly, A.E., Dave, D., (2011) Am. J. Environ. Sci, 7, p. 423
  • Motta, F.L., Stoyanov, S.R., Soares, J.B.P., (2018) Chemosphere, 194, p. 837
  • Wang, X., Shi, Y., Graff, R.W., Lee, D., Gao, H., (2015) Polymer, 72, p. 361
  • Dudchenko, A.V., Rolf, J., Shi, L., Olivas, L., Duan, W., Jassby, D., (2015) ACS Nano, 9, p. 9930
  • Padaki, M., Surya Murali, R., Abdullah, M.S., Misdan, N., Moslehyani, A., Kassim, M.A., Hilal, N., Ismail, A.F., (2015) Desalination, 357, p. 197
  • Dang, Z., Liu, L., Li, Y., Xiang, Y., Guo, G., (2016) ACS Appl. Mater. Interfaces, 8, p. 31281
  • Doshi, B., Sillanpää, M., Kalliola, S., (2018) Water Res, 135, p. 262
  • Gupta, S., Tai, N.-H., (2016) J. Mater. Chem. A, 4, p. 1550
  • Emam, E.A., (2013) Am. J. Environ. Prot, 2, p. 161
  • Hrubesh, L.W., Coronado, P.R., Satcher, J.H., (2001) J. Non. Cryst. Solids, 285, p. 328
  • Kandanelli, R., Meesala, L., Kumar, J., Raju, C.S.K., Peddy, V.C.R., Gandham, S., Kumar, P., (2018) Mar. Pollut. Bull, 128, p. 32
  • Abolghasemi Mahani, A., Motahari, S., Mohebbi, A., (2018) Mar. Pollut. Bull, 129, p. 438
  • Wang, J., Wang, H., Geng, G., (2018) Mar. Pollut. Bull, 127, p. 108
  • Duan, S., Liu, X., Wang, Y., Meng, Y., Alsaedi, A., Hayat, T., Li, J., (2017) Plasma Process. Polym, 14, p. 1600218
  • Yasuda, H., (1985) Plasma Polymerization, , Academic Press Inc, Orlando
  • De Bleecker, K., Bogaerts, A., Goedheer, W., (2006) Appl. Phys. Lett, 88, p. 3
  • Kovacevic, E., Berndt, J., Strunskus, T., Boufendi, L., (2012) J. Appl. Phys, 112, p. 013303
  • Winter, J., Berndt, J., Hong, S.-H., Kovačević, E., Stefanović, I., Stepanović, O., (2009) Plasma Sources Sci. Technol, 18, p. 034010
  • Siow, K.S., (2018) Plasma Process. Polym, 15, p. 1800059
  • (2014), WO 2014020217, Universidad Del País Vasco-Euskal Herriko Unibertsitatea and Consejo Nacional De Investigaciones Científicas Y Técnicas, invs.: M. Felisberto, L. Sacco, G. Rubiolo, S. Goyanes, A. Eceiza Mendiguren, G. Kortabarria Alzerreka, I. Mondragon Egaña; Heyse, P., Dams, R., Paulussen, S., Houthoofd, K., Janssen, K., Jacobs, P.A., Sels, B.F., (2007) Plasma Process. Polym, 4, p. 145
  • Nisol, B., Gagnon, H., Lerouge, S., Wertheimer, M.R., (2016) Plasma Process. Polym, 13, p. 366
  • Reitz, U., Salge, J.G.H., Schwarz, R., (1993) Surf. Coat. Technol, 59, p. 144
  • Arias-Durán, A., Giuliani, L., D'Accorso, N.B., Grondona, D., Goyanes, S., (2013) Surf. Coat. Technol, 216, p. 185
  • Dai, W., Kim, S.J., Seong, W.-K., Kim, S.H., Lee, K.-R., Kim, H.-Y., Moon, M.-W., (2013) Sci. Rep, 3, p. 2524
  • Kim, D.H., Jung, M.C., Cho, S.H., Kim, S.H., Kim, H.Y., Lee, H.J., Oh, K.H., Moon, M.W., (2015) Sci. Rep, 5, p. 1
  • Felisberto, M.V., (2016), Síntesis, Confinamiento y Alineación de Nanotubos de Carbo Aplicación a Nanocompuestos Poliméricos Orientados,, Ph.D. Thesis, Universidad de Buenos Aires; (2012), ASTM F726-12,, Standard Test Method for Sorbent Performance of Adsorbents; Bazargan, A., Tan, J., McKay, G., (2015) J. Test. Eval, 43, p. 20140227
  • Katusich, O., Vallone, A., Blasetti, H., Alassia, F., Ríos, S.M., Sapag, K., Nudelman, N., (2016) Am. J. Mod. Chem. Eng, 2, p. 15
  • Díaz-Díaz, C.M.Á., Rivas-Trasancos, L., León-Barrios, M., Acosta-Sánchez, J., (2018) Rev. Cuba. Química, 30, p. 289
  • Méndez Tobar, M., Machado Soberanes, J.A., Guerra Sánchez, R., (2012) Tecnol. Ciencia Educ, 27, p. 7
  • Karakasi, O.K., Moutsatsou, A., (2013) Waste Manag. Res, 31, p. 376
  • Demirel Bayık, G., Altın, A., (2017) Mar. Pollut. Bull, 125, p. 341
  • Blainey, P.C., Reid, P.J., (2001) Spectrochim. Acta − Part A Mol. Biomol. Spectrosc, 57, p. 2763
  • Socrates, G., (2004) Infrared and Raman Characteristic Group Frequencies, , 3rd ed.,, John Wiley & Sons, Chichester
  • Yasuda, H., Hirotsu, T., (1977) J. Polym. Sci. Polym. Chem. Ed, 15, p. 2749
  • Diffey, B.L., (2002) J. Cosmet. Dermatol, 1, p. 124

Citas:

---------- APA ----------
Torasso, N., Trupp, F., Arias Durán, A., D'Accorso, N., Grondona, D. & Goyanes, S. (2019) . Superhydrophobic plasma polymerized nanosponge with high oil sorption capacity. Plasma Processes and Polymers, 16(3).
http://dx.doi.org/10.1002/ppap.201800158
---------- CHICAGO ----------
Torasso, N., Trupp, F., Arias Durán, A., D'Accorso, N., Grondona, D., Goyanes, S. "Superhydrophobic plasma polymerized nanosponge with high oil sorption capacity" . Plasma Processes and Polymers 16, no. 3 (2019).
http://dx.doi.org/10.1002/ppap.201800158
---------- MLA ----------
Torasso, N., Trupp, F., Arias Durán, A., D'Accorso, N., Grondona, D., Goyanes, S. "Superhydrophobic plasma polymerized nanosponge with high oil sorption capacity" . Plasma Processes and Polymers, vol. 16, no. 3, 2019.
http://dx.doi.org/10.1002/ppap.201800158
---------- VANCOUVER ----------
Torasso, N., Trupp, F., Arias Durán, A., D'Accorso, N., Grondona, D., Goyanes, S. Superhydrophobic plasma polymerized nanosponge with high oil sorption capacity. Plasma Processes Polym. 2019;16(3).
http://dx.doi.org/10.1002/ppap.201800158