Artículo

Xaubet, M.; Baudler, J.-S.; Gerling, T.; Giuliani, L.; Minotti, F.; Grondona, D.; Von Woedtke, T.; Weltmann, K.-D. "Design optimization of an air atmospheric pressure plasma-jet device intended for medical use" (2018) Plasma Processes and Polymers. 15(8)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The current and potential applications of atmospheric pressure plasmas in medicine generate an increasing need to develop safe and reliable plasma devices for patient treatment. This paper shows how the estimation of safety risks, the stability of the generated plasma, and the effectiveness in the aimed application can orientate the design process of a specific atmospheric pressure plasma device intended for clinical use. A promising plasma jet device operated with air is optimized, leading to a configuration with a more advanced design that reduces the temperature of the effluent, prevents the material degradation and improves the isolation of the high voltage components. The effects of the plasma jet treatment are investigated by chemical analysis of demineralized water and inactivation tests on E. coli cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Design optimization of an air atmospheric pressure plasma-jet device intended for medical use
Autor:Xaubet, M.; Baudler, J.-S.; Gerling, T.; Giuliani, L.; Minotti, F.; Grondona, D.; Von Woedtke, T.; Weltmann, K.-D.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Pabellón 1, Ciudad UniversitariaBuenos Aires 1428, Argentina
CONICET - Universidad de Buenos Aires, Instituto de Física del Plasma (INFIP), Pabellón 1, Ciudad UniversitariaBuenos Aires 1428, Argentina
Leibniz Institute for Plasma Science and Technology (INP Greifswald e.V.), Felix Hausdorff-Straße Greifswald, 217489, Germany
Palabras clave:atmospheric pressure plasma jet; non-thermal plasma; plasma medicine; UV–VIS spectroscopy; VUV spectroscopy; Atmospheric chemistry; Atmospheric pressure; Chemical analysis; Design; Effluents; Escherichia coli; Patient treatment; Plasma devices; Plasma jets; Plasma sources; Risk perception; Ultraviolet visible spectroscopy; Atmospheric pressure plasma jets; Nonthermal plasma; Plasma medicines; UV-vis spectroscopy; VUV spectroscopy; Plasma stability
Año:2018
Volumen:15
Número:8
DOI: http://dx.doi.org/10.1002/ppap.201700211
Título revista:Plasma Processes and Polymers
Título revista abreviado:Plasma Processes Polym.
ISSN:16128850
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16128850_v15_n8_p_Xaubet

Referencias:

  • Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N., Fridman, A., (2008) Plasma Process. Polym, 5, p. 503
  • Kong, M.G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., Van Dijk, J., Zimmermann, J.L., (2009) New. J. Phys, 11, p. 115012
  • von Woedtke, T., Metelmann, H.R., Weltmann, K.D., (2004) Contrib. Plasma Phys, 54, p. 104
  • Weltmann, K.-D., von Woedtke, T., (2017) Plasma Phys. Contr. Fusion, 59, p. 014031
  • Daeschlein, G., Scholz, S., Arnold, A., Von Podewils, S., Haase, H., Emmert, S., von Woedtke, T., Jünger, M., (2012) Plasma Process Polym, 9, p. 380
  • Isbary, G., Zimmermann, J.L., Shimizu, T., Li, Y.F., Morfill, G.E., Thomas, H.M., Steffes, B., Stolz, W., (2013) Clin Plasma Med, 1, p. 19
  • Emmert, S., Brehmer, F., Hänßle, H., Helmke, A., Mertens, N., Ahmed, R., Simon, D., Schön Wolfgang Viöl, M.P., (2013) Clin. Plasma Med, 1, p. 24
  • Singh, D.S., Chandra, D.R., Tripathi, D.S., Rahman, D.H., Tripathi, D.P., Jain, D.A., Gupta, D.P., (2014) IOSR J. Dent. Med. Sci, 13, p. 06
  • Simoncelli, E., Barbieri, D., Laurita, R., Liguori, A., Stancampiano, A., Viola, L., Tonini, R., Colombo, V., (2015) Clin. Plasma Med, 3, p. 77
  • Schlegel, J., Köritzer, J., Boxhammer, V., (2013) Clin. Plasma Med, 1, p. 2
  • Robert, E., Vandamme, M., Brullé, L., Lerondel, S., Le Pape, A., Sarron, V., Riès, D., Pouvesle, J.M., (2013) Clin. Plasma Med, 1, p. 8
  • Kajiyama, H., Nakamura, K., Utsumi, F., Tanaka, H., Hori, M., Kikkawa, F., (2014) Jpn. J. Appl. Phys, 53, p. 05FA05
  • Miller, V., Lin, A., Fridman, A., (2016) Plasma Chem. Plasma Process, 36, p. 259
  • Hirst, A.M., Frame, F.M., Arya, M., Maitland, N.J., O'Connell, D., (2016) Tumor Biol, 37, p. 7021
  • Ermolaeva, S.A., Varfolomeev, A.F., Chernukha, M.Y., Yurov, D.S., Vasiliev, M.M., Kaminskaya, A.A., Moisenovich, M.M., Gintsburg, A.L., (2011) J. Med. Microbiol, 60, p. 75
  • Kvam, E., Davis, B., Mondello, F., Garner, A.L., (2012) Antimicrob. Agents Chemother, 56, p. 2028
  • O'Connor, N., Cahill, O., Daniels, S., Galvin, S., Humphreys, H., (2014) J. Hosp. Infect, 88, p. 59
  • von Woedtke, T., Reuter, S., Masur, K., Weltmann, K.-D., (2013) Phys. Rep, 530, p. 291
  • Graves, D.B., (2012) J. Phys. D Appl. Phys, 45, p. 263001
  • Lu, X., Naidis, G.V., Laroussi, M., Reuter, S., Graves, D.B., Ostrikov, K., (2016) Phys. Rep, 630, p. 1
  • Golda, J., Held, J., Redeker, B., Konkowski, M., Beijer, P., Sobota, A., Kroesen, G., Schulz-von der Gathen, V., (2016) J. Phys. D Appl. Phys, 49, p. 84003
  • Nosenko, T., Shimizu, T., Morfill, G.E., (2009) New J. Phys, 11, p. 115013
  • Lackmann, J.-W., Schneider, S., Edengeiser, E., Jarzina, F., Brinckmann, S., Steinborn, E., Havenith, M., Bandow, J.E., (2013) J. Royal Soc Interface, 10, p. 20130591
  • Weltmann, K.-D., Kindel, E., Brandenburg, R., Meyer, C., Bussiahn, R., Wilke, C., von Woedtke, T., (2009) Contrib. Plasma Phys, 49, p. 631
  • Tiede, R., Hirschberg, J., Daeschlein, G., von Woedtke, T., Vioel, W., Emmert, S., (2014) Contrib. Plasma Phys, 54, p. 118
  • (2014), DIN-SPEC 91315 General requirements for medical plasma sources (in German), Beuth-Verlag, Berlin, Germany; Mann, M.S., Tiede, R., Gavenis, K., Daeschlein, G., Bussiahn, R., Weltmann, K.-D., Emmert, S., Ahmed, R., (2016) Clin. Plasma Med, 4, p. 35
  • Reuter, S., Winter, J., Iseni, S., Schmidt-Bleker, A., Dünnbier, M., Masur, K., Wende, K., Weltmann, K.-D., (2015) IEEE Trans. Plasma Sci, 34, p. 3185
  • Winter, J., Wende, K., Masur, K., Iseni, S., Dünnbier, M., Hammer, M.U., Tresp, H., Reuter, S., (2013) J. Phys. D Appl. Phys, 46, p. 295401
  • Polak, M., Winter, J., Schnabel, U., Ehlbeck, J., Weltmann, K.-D., (2012) Plasma Process. Polym, 9, p. 67
  • Hao, X., Mattson, A.M., Edelblute, C.M., Malik, M.A., Heller, L.C., Kolb, J.F., (2014) Plasma Process. Polym, 11, p. 1044
  • Weltmann, K.-D., von Woedtke, T., (2011) Eur. Phys. J. Appl. Phys, 55, p. 13807
  • Daeschlein, G., von Woedtke, T., Kindel, E., Brandenburg, R., Weltmann, K.-D., Ju, M., (2010) Plasma Process. Polym, 7, p. 224
  • Giuliani, L., Xaubet, M., Grondona, D., Minotti, F., Kelly, H., (2013) Phys Plasmas, 20, p. 063505
  • Hong, Y.C., Uhm, H.S., (2007) Phys. Plasmas, 14, p. 053503
  • Kolb, J.F., Mohamed, A.A.H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., Stacey, M., Schoenbach, K.H., (2008) Appl. Phys. Lett, 92, p. 241501
  • Xaubet, M., Giuliani, L., Grondona, D., Minotti, F., (2017) Phys. Plasmas, 24, p. 013502
  • Foest, R., Kindel, E., Lange, H., Ohl, A., Stieber, M., Weltmann, K.-D., (2007) Contrib. Plasma Phys, 47, p. 119
  • Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, C., Weltmann, K.-D., von Woedtke, T., (2010) Plasma Process. Polym, 7, p. 250
  • Lu, M., Wang, X., Pu, Y., Guan, Z., (2008) Plasma Sci. Technol, 10, p. 185
  • Li, X., Tao, X., Yin, Y., (2009) IEEE Trans. Plasma Sci, 37, p. 759
  • Pearse, R.W.B., Gaydon, A.G., (1963) The Identification of Molecular Spectra, , Whitefriars Press, London, UK
  • Kramida, A., Ralchenko, Y., Reader, J., http://physics.nist.gov/asd, NIST ASD Team, NIST Atomic Spectra Database (version 5.5.1), (accessed onOctober 2017); (2004) Health Phys, 87, p. 171. , International Commission on Non-Ionizing Radiation Protection
  • Samson, J.A., (1967) Techniques of Vacuum Ultraviolet Spectroscopy, , John Wiley & Sons, New York, USA
  • Helmke, A., Hoffmeister, D., Mertens, N., Emmert, S., Schuette, J., Vioel, W., (2009) New J. Phys, 11, p. 115025
  • Schmidt-Bleker, A., Winter, J., Iseni, S., Dünnbier, M., Weltmann, K.-D., Reuter, S., (2014) J. Phys. D. Appl. Phys, 47, p. 145201
  • Winter, J., Tresp, H., Hammer, M.U., Iseni, S., Kupsch, S., Schmidt-Bleker, A., Wende, K., Reuter, S., (2014) J. Phys. D. Appl. Phys, 47, p. 285401
  • Kirkpatrick, M.J., Dodet, B., Odic, E., (2007) Int. J. Plasma Environ. Sci. Technol, 1, p. 96
  • Shimizu, T., Steffes, B., Pompl, R., Jamitzky, F., Bunk, W., Ramrath, K., Georgi, M., Morfill, G.E., (2008) Plasma Process. Polym, 5, p. 577
  • Daeschlein, G., Napp, M., von Podewils, S., Lutze, S., Emmert, S., Lange, A., Klare, I., Jünger, M., (2014) Plasma Process. Polym, 11, p. 175
  • Sladek, R.E.J., Stoffels, E., Walraven, R., Tielbeek, P.J.A., Koolhoven, R.A., (2004) IEEE Trans. Plasma Sci, 32, p. 1540
  • Lukes, P., Dolezalova, E., Sisrova, I., Clupek, M., (2014) Plasma Sources Sci. Technol, 23, p. 015019
  • Bekeschus, S., Schmidt, A., Weltmann, K.-D., von Woedtke, T., (2016) Clin. Plasma Med, 4, p. 19

Citas:

---------- APA ----------
Xaubet, M., Baudler, J.-S., Gerling, T., Giuliani, L., Minotti, F., Grondona, D., Von Woedtke, T.,..., Weltmann, K.-D. (2018) . Design optimization of an air atmospheric pressure plasma-jet device intended for medical use. Plasma Processes and Polymers, 15(8).
http://dx.doi.org/10.1002/ppap.201700211
---------- CHICAGO ----------
Xaubet, M., Baudler, J.-S., Gerling, T., Giuliani, L., Minotti, F., Grondona, D., et al. "Design optimization of an air atmospheric pressure plasma-jet device intended for medical use" . Plasma Processes and Polymers 15, no. 8 (2018).
http://dx.doi.org/10.1002/ppap.201700211
---------- MLA ----------
Xaubet, M., Baudler, J.-S., Gerling, T., Giuliani, L., Minotti, F., Grondona, D., et al. "Design optimization of an air atmospheric pressure plasma-jet device intended for medical use" . Plasma Processes and Polymers, vol. 15, no. 8, 2018.
http://dx.doi.org/10.1002/ppap.201700211
---------- VANCOUVER ----------
Xaubet, M., Baudler, J.-S., Gerling, T., Giuliani, L., Minotti, F., Grondona, D., et al. Design optimization of an air atmospheric pressure plasma-jet device intended for medical use. Plasma Processes Polym. 2018;15(8).
http://dx.doi.org/10.1002/ppap.201700211