Artículo

Pouquet, A.; Baerenzung, J.; Pietarila Graham, J.; Mininni, P.; Politano, H.; Ponty, Y. "Modeling of high Reynolds number flows with solid body rotation or magnetic fields" (2010) Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 110:287-294
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present two models for turbulent flows with periodic boundary conditions and with either rotation, or a magnetic field in the magnetohydrodynamics (MHD) limit. One model, based on Lagrangian averaging, can be viewed as an invariant-preserving filter, whereas the other model, based on spectral closures, generalizes the concepts of eddy viscosity and eddy noise. These models, when used separately or in conjunction, may lead to substantial savings for modeling high Reynolds number flows when checked against high resolution direct numerical simulations (DNS), the examples given here being run on grids of up to 15363 points. © 2010 Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Modeling of high Reynolds number flows with solid body rotation or magnetic fields
Autor:Pouquet, A.; Baerenzung, J.; Pietarila Graham, J.; Mininni, P.; Politano, H.; Ponty, Y.
Filiación:NCAR, PO Box 3000, Boulder, CO 80307, United States
MPI für Sonnensystemforschung, 37191 Katlenburg, Germany
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Observatoire de la Côte d'Azur, Nice, France
Año:2010
Volumen:110
Página de inicio:287
Página de fin:294
DOI: http://dx.doi.org/10.1007/978-3-642-14139-3-35
Título revista:Notes on Numerical Fluid Mechanics and Multidisciplinary Design
Título revista abreviado:Notes Numer. Fluid Mech.
ISSN:16122909
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16122909_v110_n_p287_Pouquet

Referencias:

  • Montgomery, D., Pouquet, A., An alternative interpretation for the Holm "alpha" model (2002) Phys. Fluids, 14, pp. 3365-3366
  • Chen, S.Y., Holm, D.D., Margolin, L.G., Zhang, R., Direct numerical simulations of the Navier-Stokes alpha model (1999) Physica D, 133, pp. 66-83
  • Foias, C., Holm, D.D., Titi, E.S., The Navier-Stokes-alpha model of fluid turbulence (2001) Physica D, 152-153, pp. 505-519
  • Holm, D.D., Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics (2002) Chaos, 12, pp. 518-530
  • Chen, S., A connection between the Camassa-Holm equations and turbulent Bows in channels and pipes (1999) Phys. Fluids, 11, pp. 2343-2353
  • Nadiga, B., Shkoller, S., Enhancement of the inverse-cascade of energy in the 2D Lagrangian-averaged Navier-Stokes equations (2001) Phys. Fluids, 13, pp. 1528-1531
  • Mininni, P., Montgomery, D., Pouquet, A., Numerical solutions of the three-dimensional MHD alpha model (2005) Phys. Fluids, 17, p. 035112
  • Pietarila Graham, J., Inertial range scaling kármán theorem and intermittency for forced and decaying lagrangian averaged mhd in 2D (2006) Phys. Fluids, 18, p. 045106
  • Pietarila Graham, J., Highly turbulent solutions of LANS-and their LES potential (2007) Phys. Rev. E, 76, p. 056310
  • Pietarila Graham, J., Three regularization models of the Navier-Stokes equations (2008) Phys. Fluids, 20, p. 035107
  • Pietarila Graham, J., Mininni, P., Pouquet, A., The Lagrangian-averaged model for MHD turbulence and the absence of bottleneck (2009) Phys. Rev. E, , to appear), arxiv/0806.2054v1
  • Graham, J., Mininni, P., Pouquet, A., Cancellation exponent and multifractal structure in Lagrangian averaged magnetohydrodynamics (2005) Phys. Rev. E, 72, p. 045301
  • Orszag, S., Kruskal, M., Formulation of the theory of turbulence (1968) Phys. Fluids, 11, pp. 43-60
  • Baerenzung, J., Spectral modeling of turbulent flows and the role of helicity (2008) Phys. Rev. E, 77, p. 046303
  • Baerenzung, J., Spectral modeling of magnetohydrodynamic turbulent flows (2008) Phys. Rev. E, 78, p. 026310
  • Mininni, P., Alexakis, A., Pouquet, A., Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers (2009) Phys. Fluids, 21, p. 015108
  • Mininni, P., Pouquet, A., Helicity cascades in rotating turbulence (2009) Phys. Fluids, , to appear); See also arxiv: 0809.0869
  • Baerenzung, J., Modeling of rotating flows at moderate Rossby numbers (2009) Phys. Rev. E, , submitted); See also arXiv:0812.1821v1
  • Baerenzung, J., (2009) Modeling of Rotating Flows With Helicity, , in preparation
  • Chollet, J.P., Lesieur, M., Parametrization of small-scale three-dimensional isotropic turbulence using spectral closures (1981) J. Atmos. Sci., 38, pp. 2747-2757
  • André, J.C., Lesieur, M., Influence of helicity on the evolution of isotropic turbulence at high reynolds number (1977) J. Fluid Mech., 81, pp. 187-207
  • Sagaut, P., Cambon, C., (2008) Homogeneous Turbulence Dynamics, , Cambridge Univ. Press, Cambridge
  • Cambon, C., Scott, J.F., Linear and nonlinear models of anisotropic turbulence (1999) Ann. Rev. Fluid Mech., 31, pp. 1-53
  • Cambon, C., Rubinstein, R., Godeferd, F.S., Advances in wave turbulence: Rapidly rotating flows (2004) New J. Phys., 6 (73), pp. 1-29
  • Cui, G.X., A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence (2007) J. Fluid Mech., 582, pp. 377-397
  • Childress, S., Gilbert, A., (1995) Stretch, Twist, Fold: The Fast Dynamo, , Springer, Heidelberg
  • Mininni, P., Pouquet, A., Persistent cyclonic structures in self-similar turbulent flows (2009) Phys. Rev. Lett., , arXiv: 0903.2294 (submitted
  • Ponty, Y., Critical magnetic Reynolds number for dynamo action as a function of magnetic Prandtl number (2005) Phys. Rev. Lett., 94, p. 164502

Citas:

---------- APA ----------
Pouquet, A., Baerenzung, J., Pietarila Graham, J., Mininni, P., Politano, H. & Ponty, Y. (2010) . Modeling of high Reynolds number flows with solid body rotation or magnetic fields. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 110, 287-294.
http://dx.doi.org/10.1007/978-3-642-14139-3-35
---------- CHICAGO ----------
Pouquet, A., Baerenzung, J., Pietarila Graham, J., Mininni, P., Politano, H., Ponty, Y. "Modeling of high Reynolds number flows with solid body rotation or magnetic fields" . Notes on Numerical Fluid Mechanics and Multidisciplinary Design 110 (2010) : 287-294.
http://dx.doi.org/10.1007/978-3-642-14139-3-35
---------- MLA ----------
Pouquet, A., Baerenzung, J., Pietarila Graham, J., Mininni, P., Politano, H., Ponty, Y. "Modeling of high Reynolds number flows with solid body rotation or magnetic fields" . Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 110, 2010, pp. 287-294.
http://dx.doi.org/10.1007/978-3-642-14139-3-35
---------- VANCOUVER ----------
Pouquet, A., Baerenzung, J., Pietarila Graham, J., Mininni, P., Politano, H., Ponty, Y. Modeling of high Reynolds number flows with solid body rotation or magnetic fields. Notes Numer. Fluid Mech. 2010;110:287-294.
http://dx.doi.org/10.1007/978-3-642-14139-3-35