Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Secondary metabolites from the cultures of the dark septate fungal endophyte (DSE) Drechslera sp., isolated from the roots of rye grass (Lollium sp.) and cultured under different experimental conditions, are described here for the first time. The use of suberoylanilidehydroxamic acid (SAHA) and other histone deacetylase inhibitors as epigenetic modifiers in the culture medium was evaluated by LC/MS and LC/MS/MS. Several differences in the metabolite production were detected by means of supervised principal component analysis (PCA) of LC/MS data. The presence of the compounds in the culture medium or in the mycelium was compared. In order to confirm their structure, many of these natural products were isolated from a larger scale culture. These metabolites were characterized as prenylhydroxybenzoic acids and chromans, two compounds, one of each class were previously undescribed, prenylquinoids, diketopiperazines and macrosphelides. Some of the compounds, which were released to the medium, showed good antifungal activity, suggesting that these compounds could protect Lollium from fungal phytopatogens. The use of SAHA as an additive of the cultures also induced the release of hexosylphytosphyngosine to the culture medium. The biotransformation of the inhibitors was observed in addition to the production of antifungal metabolites, showing the ability of this endophytic strain to control xenobiotics. © 2018 Wiley-VHCA AG, Zurich, Switzerland

Registro:

Documento: Artículo
Título:Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors
Autor:Siless, G.E.; Gallardo, G.L.; Rodriguez, M.A.; Rincón, Y.A.; Godeas, A.M.; Cabrera, G.M.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina
Palabras clave:asperpentyn; Drechslera; lysosphingolipid; macrosphelides; SAHA; asperpentyn; benzoic acid derivative; chroman derivative; hexosylphytosphyngosine; histone deacetylase inhibitor; macrosphelide; natural product; piperazinedione; prenylhydroxybenzoic acid; prenylquinoid; sphingolipid; sphingosine derivative; unclassified drug; vorinostat; xenobiotic agent; antifungal agent; histone deacetylase; histone deacetylase inhibitor; antifungal activity; Article; biotransformation; Drechslera; endophyte; epigenetics; fungus; fungus culture; liquid chromatography-mass spectrometry; Lolium; metabolite; mycelium; nonhuman; principal component analysis; Ascomycetes; chemistry; drug effect; endophyte; evaluation study; isolation and purification; liquid chromatography; metabolism; microbial sensitivity test; principal component analysis; tandem mass spectrometry; Antifungal Agents; Ascomycota; Chromatography, Liquid; Endophytes; Histone Deacetylase Inhibitors; Histone Deacetylases; Microbial Sensitivity Tests; Principal Component Analysis; Tandem Mass Spectrometry
Año:2018
Volumen:15
Número:8
DOI: http://dx.doi.org/10.1002/cbdv.201800133
Título revista:Chemistry and Biodiversity
Título revista abreviado:Chem. Biodiversity
ISSN:16121872
CODEN:CBHIA
CAS:piperazinedione, 29990-68-9; vorinostat, 149647-78-9; histone deacetylase, 9076-57-7; Antifungal Agents; Histone Deacetylase Inhibitors; Histone Deacetylases
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16121872_v15_n8_p_Siless

Referencias:

  • Newsham, K.K., A Meta-Analysis of Plant Responses to Dark Septate Root Endophytes (2011) New Phytol., 190, pp. 783-793
  • Kivlin, S.N., Emery, S.M., Rudgers, J.A., Fungal Symbionts Alter Plant Responses to Global Change (2013) Am. J. Bot., 100, pp. 1445-1457
  • Osterhage, C., König, G.M., Höller, U., Wright, A.D., Rare Sesquiterpenes from the Algicolous Fungus Drechslera dematioidea (2002) J. Nat. Prod., 65, pp. 306-313
  • Abdel-Lateff, A., Okino, T., Alarif, W.M., Al-Lihaibi, S.S., Sesquiterpenes from the Marine Algicolous Fungus Drechslera sp (2013) J. Saudi Chem. Soc., 17, pp. 161-165
  • El-Gendy, M.M.A.A., Ten, N.M., Ibrahim, H.A.E.H., El-Baky, D.H.A., Heavy Metals Biosorption from Aqueous Solution by Endophytic Drechslera hawaiiensis of Morusalba L. Derived from Heavy Metals Habitats (2017) Mycobiology, 45, pp. 73-83
  • Kastanias, M.A., Chrysayi-Tokousbalides, M., Herbicidal Potential of Pyrenophorol Isolated from a Drechslera avenae Pathotype (2000) Pest Manag. Sci., 56, pp. 227-232
  • Read, E., Edwards, J., Deseo, M., Rawlin, G., Rochfor, S., Current Understanding of Acute Bovine Liver Disease in Australia (2017) Toxins, 9, p. 8
  • Sugawara, F., Hallock, Y.F., Bunkers, G.D., Kenfield, D.S., Strobel, G., Yoshida, S., Phytoactive Eremophilanes Produced by the Weed Pathogen Drechslera gigantea (1993) Biosci. Biotech. Biochem., 57, pp. 236-239
  • Evidente, A., Andolfi, A., Cimmino, A., Vurro, M., Fracchiolla, M., Charudattan, R., Motta, A., Ophiobolin E and 8-epi-ophiobolin J Produced by Drechslera gigantea, a Potential Mycoherbicide of Weedy Grasses (2006) Phytochemistry, 67, pp. 2281-2287
  • Sugawara, F., Strobel, G., Strange, R.N., Siedow, J.N., Van Duyne, G.D., Clardy, J., Phytotoxins from the Pathogenic Fungi Drechslera maydis and Drechslera sorghicola (1987) Proc. Natl. Acad. Sci. U.S.A., 84, pp. 3081-3085
  • Zhang, G.-F., Guo, Z.-K., Wang, W., Cui, J.-T., Tan, R.-X., Ge, H.-M., Neuraminidase Inhibitory Terpenes from Endophytic Cochliobolus sp (2011) J. Asian Nat. Prod. Res., 13, pp. 761-764
  • Nozoe, S., Morisaki, M., Tsuda, K., Iitaka, Y., Takahashi, N., Tamura, S., Ishibashi, K., Shirasaka, M., The Structure of Ophiobolin, a C25 Terpenoid having a Novel Skeleton (1965) J. Am. Chem. Soc., 87, pp. 4968-4970
  • Nozoe, S., Hirai, K., Tsuda, K., Ishibashi, K., Shirasaka, M., Grove, J.F., The Structure of Pyrenophorin (1965) Tetrahedron Lett., 51, pp. 4675-4677
  • Evidente, A., Andolfi, A., Vurro, M., Fracchiolla, M., Zonno, M.C., Motta, A., Drazepinone, a Trisubstituted Tetrahydronaphthofuroazepinone with Herbicidal Activity Produced by Drechslera siccans (2005) Phytochemistry, 66, pp. 715-721
  • Sugawara, F., Takahashi, N., Strobel, G.A., Strobel, S.A., Lu, H.S.M., Clardy, J., Triticones A and B, Novel Phytotoxins from the Plant Pathogenic Fungus Drechslera tritici-repentis (1988) J. Am. Chem. Soc., 110, pp. 4086-4087
  • Awaad, A.S., Al-Zaylaee, H.M., Alqasoumi, S.I., Zain, M.E., Aloyan, E.M., Alafeefy, A.M., Awad, E.S.H., El-Meligy, R.M., Anti-Leishmanial Activities of Extracts and Isolated Compounds from Drechslera rostrata and Eurotium tonpholium (2014) Phytother. Res., 28, pp. 774-780
  • Bode, H.B., Bethe, B., Höfs, R., Zeeck, A., Big Effects from Small Changes: Possible Ways to Explore Nature's Chemical Diversity (2002) ChemBioChem, 3, pp. 619-627
  • Paranagama, P.A., Wijeratne, E.M.K., Gunatilaka, A.A.L., Uncovering Biosynthetic Potential of Plant-Associated Fungi: Effect of Culture Conditions on Metabolite Production by Paraphaeosphaeria quadriseptata and Chaetomium chiwersii (2007) J. Nat. Prod., 70, pp. 1939-1945
  • Zutz, C., Gacek, A., Sulyok, M., Wagner, M., Strauss, J., Rychli, K., Small Chemical Chromatin Effectors Alter Secondary Metabolite Production in Aspergillus clavatus (2013) Toxins, 5, pp. 1723-1741
  • Henrikson, J.C., Hoover, A.R., Joyner, P.M., Cichewicz, R.H., A Chemical Epigenetics Approach for Engineering the in situ Biosynthesis of a Cryptic Natural Product from Aspergillus niger (2009) Org. Biomol. Chem., 7, pp. 435-438
  • Asai, T., Yamamoto, T., Oshima, Y., Histone Deacetylase Inhibitor Induced the Production of Three Novel Prenylated Tryptophan Analogs in the Entomopathogenic Fungus, Torrubiellaluteo rostrata (2011) Tetrahedron Lett., 52, pp. 7042-7045
  • Furtado, N.A.J.C., Vessecchi, R., Tomaz, J.C., Galembeck, S.E., Bastos, J.K., Lopes, N.P., Crotti, A.E.M., Fragmentation of Diketopiperazines from Aspergillus fumigatus by Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) (2007) J. Mass Spectrom., 42, pp. 1279-1286
  • Borthwick, A.D., 2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products (2012) Chem. Rev., 112, pp. 3641-3716
  • Wang, Q.-Z., Ge, H.-M., Zhang, J., Wu, J.-H., Song, Y.-C., Zhang, Y.-F., Tan, R.-X., Cochliones A – D, Four New Tetrahydrochromanone Derivatives from Endophytic Cochliobolus sp (2010) J. Asian Nat. Prod. Res., 12, pp. 485-491
  • Renaud, J.-M., Tsoupras, G., Stoeckli-Evans, H., Tabacchi, R., A Novel Allenicepoxycyclohexane and Related Compounds from Eutypa lata (Pers: F.) Tul (1989) Helv. Chim. Acta, 72, pp. 1262-1267
  • Klaiklay, S., Rukachaisirikul, V., Tadpetch, K., Sukpondma, Y., Phongpaichit, S., Buatong, J., Sakayaroj, J., Chlorinated Chromone and Diphenyl Ether Derivatives from the Mangrove-derived Fungus Pestalotiopsis sp. PSU-MA69 (2012) Tetrahedron, 68, pp. 2299-2305
  • Mühlenfeld, A., Achenbacht, H., Asperpentyn, a Novel Acetylenic Cyclohexene Epoxide from Aspergillus duricaulis (1988) Phytochemistry, 27, pp. 3853-3855
  • Rukachaisirikul, V., Rungsaiwattana, N., Klaiklay, S., Phongpaichit, S., Borwornwiriyapan, K., Sakayaroj, J., γButyrolactone, Cytochalasin, Cyclic Carbonate, Eutypinic Acid, and Phenalenone Derivatives from the Soil Fungus Aspergillus sp. PSURSPG185 (2014) J. Nat. Prod., 77, pp. 2375-2382
  • Smetanina, O.F., Yurchenko, A.N., Kalinovskii, A.I., Khudyakova, Y.V., Kirichuk, N.N., Pivkin, M.V., Afiyatullov, S., Mikhailov, V.V., (−)-Asperpentyn from the Facultative Marine Fungus Curvularia inaequalis (2014) Chem. Nat. Compd., 50, pp. 1120-1121
  • Li, J., Park, S., Miller, R.L., Lee, D., Tandem Enyne Metathesis-Metallotropic [1,3]-Shift for a Concise Total Syntheses of (+)-Asperpentyn, (−)-Harveynone, and (−)-Tricholomenyn A (2009) Org. Lett., 11, pp. 571-574
  • Mehta, G., Roy, S., Pan, S.C., Enantioselective Syntheses of Bioactive Epoxyquinone Natural Products (+)-Harveynone and (−)-Asperpentyn (2012) Tetrahedron Lett., 53, pp. 4093-4095
  • Nagata, T., Ando, Y., Hirota, A., Phytotoxins from Tea Gray Blight Fungi, Pestalotiopsis longiseta and Pestalotiopsis theae (1992) Biosci. Biotech. Biochem., 56, pp. 810-811
  • Pinault, M., Frangin, Y., Genet, J.-P., Zamarlik, H., Total Synthesis of Siccayne (1990) Synthesis, 10, pp. 935-937
  • Kupka, J., Anke, T., Steglich, W., Zechlin, L., Antibiotics from Basidiomycetes. XI. The Biological Activity of Siccayne, Isolated from the Marine Fungus Halocyphinavillosa J. & E. Kohlmeyer (1981) J. Antibiot., 34, pp. 298-304
  • Frank, S., Geyer, H., Geyer, R., Microscale Analysis of Glycosphingolipids from Schistosomamansoni cercariae (2011) J. Carbohydr. Chem., 30, pp. 233-248
  • Merrill, A.H., Jr., Sandhoff, K., (2002) Biochemistry of Lipids, Lipoproteins and Membranes, 36, p. 373. , ’, Eds., D. E. Vance, J. E. Vance, Elsevier Science B.V, Amsterdam, p
  • Obeid, L.M., Okamoto, Y., Mao, C., Yeast Sphingolipids: Metabolism and Biology (2002) Biochim. Biophys. Acta, 1585, pp. 163-171
  • Castelvetri, L.C., Givogri, M.I., Hebert, A., Smith, B., Song, Y., Kaminska, A., Lopez-Rosas, A., Bongarzone, E.R., The Sphingolipid Psychosine Inhibits Fast Axonal Transport in Krabbe Disease by Activation of GSK3β and Deregulation of Molecular Motors (2013) J. Neurosci., 33, pp. 10048-10056
  • Colacios, C., Sabourdy, F., Andrieu-Abadie, N., Ségui, B., Levade, T., (2015) Bioactive Sphingolipids in Cancer Biology and Therapy, , Springer International Publishing, Switzerland
  • Ramamoorthy, V., Cahoon, E.B., Thokala, M., Kaur, J., Li, J., Shah, D.M., Sphingolipid C-9 Methyltransferases are Important for Growth and Virulence but not for Sensitivity to Antifungal Plant Defensins in Fusarium graminearum (2009) Eukaryot. Cell, 8, pp. 217-229
  • Ishihara, K., Kawaguchi, T., Matsuya, Y., Sakurai, H., Saiki, I., Nemoto, H., Synthesis and Biological Evaluation of Macrosphelide Cores (2004) Eur. J. Org. Chem., pp. 3973-3978
  • Takamatsu, S., Kim, Y.-P., Hayashi, M., Hiraoka, H., Natori, M., Komiyama, K., Omura, S., Macrosphelide, a Novel Inhibitor of Cell-Cell Adhesion Molecule. II. Physicochemical Properties and Structural Elucidation (1995) J. Antibiot., 49, pp. 95-98
  • Häcker, C., Plietker, B., General Stereodivergent Enantioselective Total Synthetic Approach toward Macrosphelides A-G and M (2015) J. Org. Chem., 80, pp. 8055-8064
  • Paek, S.-M., Development of Advanced Macrosphelides: Potent Anticancer Agents (2015) Molecules, 20, pp. 4430-4449
  • Hanson, J.R., (2008) The Chemistry of Fungi, , RSC Publishing, Cambridge
  • Park, S.H., Stierle, A., Strobel, G.A., Metabolism of Maculosin, a Host-Specific Phytotoxin Produced by Alternaria alternata on Spotted Knapweed (Centaurea maculosa) (1993) Phytochemistry, 35, pp. 101-106
  • Heringdorf, D.M., Jakobs, K.H., Lysophospholipid Receptors: Signalling, Pharmacology and Regulation by Lysophospholipid Metabolism (2007) Biochim. Biophys. Acta, 1768, pp. 923-940
  • Gediya, L.K., Chopra, P., Purushottamachar, P., Maheshwari, N., Njar, V.C.O., A New Simple and High-Yield Synthesis of Suberoylanilide Hydroxamic Acid and its Inhibitory Effect Alone or in Combination with Retinoids on Proliferation of Human Prostate Cancer Cells (2005) J. Med. Chem., 48, pp. 5047-5051
  • Silvani, V.A., Fracchia, S., Fernández, L., Pérgola, M., Godeas, A., A Simple Method to Obtain Endophytic Microorganisms from Field-Collected Roots (2008) Soil Biol. Biochem., 40, pp. 1259-1263
  • Homans, A.L., Fuchs, A., Direct Bioautography on Thin-Layer Chromatography as a Method for Detecting Fungitoxic Substances (1970) J. Chromatogr., 51, pp. 325-328
  • Brewster, J.H., A Useful Model of Optical Activity. I. Open Chain Compounds (1959) J. Am. Chem. Soc., 81, pp. 5475-5483
  • Wang, T., Hao, X.-Q., Huang, J.-J., Niu, J.-L., Gong, J.-F., Song, M.-P., Chiral Bis(imidazolinyl)phenyl NCN Pincer Rhodium(III) Catalysts for Enantioselective Allylation of Aldehydes and Carbonyl–Ene Reaction of Trifluoropyruvates (2013) J. Org. Chem., 78, pp. 8712-8721
  • Zhao, S., Zhang, X., Zhang, Y., Yang, H., Huang, Y., Zhang, K., Du, T., A Ce(OTf)3/PyBox Catalyzed Enantioselective Hosomi–Sakurai Reaction of Aldehydes with Allyltrimethylsilane (2015) New J. Chem., 39, pp. 7734-7737

Citas:

---------- APA ----------
Siless, G.E., Gallardo, G.L., Rodriguez, M.A., Rincón, Y.A., Godeas, A.M. & Cabrera, G.M. (2018) . Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors. Chemistry and Biodiversity, 15(8).
http://dx.doi.org/10.1002/cbdv.201800133
---------- CHICAGO ----------
Siless, G.E., Gallardo, G.L., Rodriguez, M.A., Rincón, Y.A., Godeas, A.M., Cabrera, G.M. "Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors" . Chemistry and Biodiversity 15, no. 8 (2018).
http://dx.doi.org/10.1002/cbdv.201800133
---------- MLA ----------
Siless, G.E., Gallardo, G.L., Rodriguez, M.A., Rincón, Y.A., Godeas, A.M., Cabrera, G.M. "Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors" . Chemistry and Biodiversity, vol. 15, no. 8, 2018.
http://dx.doi.org/10.1002/cbdv.201800133
---------- VANCOUVER ----------
Siless, G.E., Gallardo, G.L., Rodriguez, M.A., Rincón, Y.A., Godeas, A.M., Cabrera, G.M. Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors. Chem. Biodiversity. 2018;15(8).
http://dx.doi.org/10.1002/cbdv.201800133