Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the present work we investigated the differential interactions of the antimicrobial peptides (AMPs) aurein 1.2 and maculatin 1.1 with a bilayer composed of a mixture of the lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We carried out molecular dynamics (MD) simulations using a coarse-grained approach within the MARTINI force field. The POPE/POPG mixture was used as a simple model of a bacterial (prokaryotic cell) membrane. The results were compared with our previous findings for structures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a representative lipid of mammalian cells. We started the simulations of the peptide–lipid system from two different initial conditions: peptides in water and peptides inside the hydrophobic core of the membrane, employing a pre-assembled lipid bilayer in both cases. Our results show similarities and differences regarding the molecular behavior of the peptides in POPE/POPG in comparison to their behavior in a POPC membrane. For instance, aurein 1.2 molecules can adopt similar pore-like structures on both POPG/POPE and POPC membranes, but the peptides are found deeper in the hydrophobic core in the former. Maculatin 1.1 molecules, in turn, achieve very similar structures in both kinds of bilayers: they have a strong tendency to form clusters and induce curvature. Therefore, the results of this study provide insight into the mechanisms of action of these two peptides in membrane leakage, which allows organisms to protect themselves against potentially harmful bacteria. [Figure not available: see fulltext.]. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures
Autor:Balatti, G.E.; Martini, M.F.; Pickholz, M.
Filiación:Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, IFIBA, Buenos Aires, C1428BFA, Argentina
Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, IQUIMEFA, Buenos Aires, C1113AA, Argentina
Palabras clave:Antimicrobial peptides; Aurein; Coarse-grained; Maculatin; Molecular dynamics; 1 palmitoyl 2 oleoyl sn glycero 3 phospho (1' rac glycerol); 1 palmitoyl 2 oleoyl sn glycero 3 phosphoethanolamine; 2 oleoyl 1 palmitoylphosphatidylcholine; aurein 1.2; lipid; maculatin 1.1; polypeptide antibiotic agent; unclassified drug; water; 1-palmitoyl-2-oleoylglycero-3-phosphoglycerol; 1-palmitoyl-2-oleoylphosphatidylcholine; 1-palmitoyl-2-oleoylphosphatidylethanolamine; amphibian protein; antiinfective agent; antimicrobial cationic peptide; aurein 1.2 peptide; maculatin-1.1 protein, Litoria; phosphatidylcholine; phosphatidylethanolamine; phosphatidylglycerol; protein binding; Article; bacterial membrane; drug mixture; lipid bilayer; molecular dynamics; priority journal; prokaryotic cell; protein lipid interaction; alpha helix; amino acid sequence; animal; Anura; binding site; chemical phenomena; chemistry; isolation and purification; lipid bilayer; metabolism; protein domain; Amino Acid Sequence; Amphibian Proteins; Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Anura; Binding Sites; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Molecular Dynamics Simulation; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylglycerols; Protein Binding; Protein Conformation, alpha-Helical; Protein Interaction Domains and Motifs
Año:2018
Volumen:24
Número:8
DOI: http://dx.doi.org/10.1007/s00894-018-3747-z
Título revista:Journal of Molecular Modeling
Título revista abreviado:J. Mol. Model.
ISSN:16102940
CODEN:JMMOF
CAS:2 oleoyl 1 palmitoylphosphatidylcholine, 6753-55-5; lipid, 66455-18-3; water, 7732-18-5; phosphatidylcholine, 55128-59-1, 8002-43-5; phosphatidylethanolamine, 1405-71-6; 1-palmitoyl-2-oleoylglycero-3-phosphoglycerol; 1-palmitoyl-2-oleoylphosphatidylcholine; 1-palmitoyl-2-oleoylphosphatidylethanolamine; Amphibian Proteins; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; aurein 1.2 peptide; Lipid Bilayers; maculatin-1.1 protein, Litoria; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylglycerols
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16102940_v24_n8_p_Balatti

Referencias:

  • Wang, G., Li, X., Wang, Z., APD3: the antimicrobial peptide database as a tool for research and education (2016) Nucleic Acids Res, 44, pp. D1087-D1093
  • Reddy, K.V.R., Yedery, R.D., Aranha, C., Antimicrobial peptides: Premises and promises (2004) Int J Antimicrob Agents, 24, pp. 536-547
  • Martin, E., Ganz, T., Lehrer, R.I., Defensins and other endogenous peptide antibiotics of vertebrates (1995) J Leukoc Biol, 58, pp. 128-136
  • Rozek, T., Wegener, K.L., Bowie, J.H., The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis: the solution structure of aurein 1.2 (2000) Eur J Biochem, 267, pp. 5330-5341. , https://doi.org/10.1046/j.1432-1327.2000.01536.x
  • Hoskin, D.W., Ramamoorthy, A., Studies on anticancer activities of antimicrobial peptides (2008) Biochim Biophys Acta Biomembr, 1778, pp. 357-375
  • de la Fuente-Núñez, C., Cardoso, M.H., de Souza, C.E., Synthetic antibiofilm peptides (2016) Biochim Biophys Acta Biomembr, 1858, pp. 1061-1069
  • Hilchie, A.L., Wuerth, K., Hancock, R.E.W., Immune modulation by multifaceted cationic host defense (antimicrobial) peptides (2013) Nat Chem Biol, 9, pp. 761-768
  • Mansour, S.C., Pena, O.M., Hancock, R.E.W., Host defense peptides: Front-line immunomodulators (2014) Trends Immunol, 35, pp. 443-450
  • Guilhelmelli, F., Vilela, N., Albuquerque, P., Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance (2013) Front Microbiol, 4, p. 353
  • Dathe, M., Wieprecht, T., Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells (1999) Biochim Biophys Acta Biomembr, 1462, pp. 71-87
  • Huang, Y., Huang, J., Chen, Y., Alpha-helical cationic antimicrobial peptides: relationships of structure and function (2010) Protein Cell, 1, pp. 143-152
  • REW, H., Rozek, A., Role of membranes in the activities of antimicrobial cationic peptides (2002) FEMS Microbiol Lett, 206, pp. 143-149
  • Jenssen, H., Hamill, P., Hancock, R.E.W., Peptide antimicrobial agents (2006) Clin Microbiol Rev, 19, pp. 491-511
  • Tossi, A., Sandri, L., Giangaspero, A., Amphipathic, alpha-helical antimicrobial peptides (2000) Biopolymers, 55, pp. 4-30
  • Zelezetsky, I., Tossi, A., Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies (2006) Biochim Biophys Acta Biomembr, 1758, pp. 1436-1449
  • Sato, H., Feix, J.B., Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides (2006) Biochim Biophys Acta Biomembr, 1758, pp. 1245-1256. , https://doi.org/10.1016/j.bbamem.2006.02.021
  • Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? (2005) Nat Rev Microbiol, 3, pp. 238-250
  • Bahar, A.A., Ren, D., Antimicrobial peptides (2013) Pharmaceuticals, 6, pp. 1543-1575
  • Mihajlovic, M., Lazaridis, T., Antimicrobial peptides in toroidal and cylindrical pores (2010) Biochim Biophys Acta Biomembr, 1798, pp. 1485-1493
  • Dowhan, W., Molecular basis for membrane phospholipid diversity: why are there so many lipids? (1997) Annu Rev Biochem, 66, pp. 199-232
  • Goldfine, H., Comparative aspects of bacterial lipids (1972) Adv Microb Physiol, 8, pp. 1-58
  • Randle, C.L., Albro, P.W., Dittmer, J.C., The phosphoglyceride composition of gram-negative bacteria and the changes in composition during growth (1969) Biochim Biophys Acta Lipids Lipid Metab, 187, pp. 214-220. , https://doi.org/10.1016/0005-2760(69)90030-7
  • Staudegger, E., Prenner, E.J., Kriechbaum, M., X-ray studies on the interaction of the antimicrobial peptide gramicidin S with microbial lipid extracts: evidence for cubic phase formation (2000) Biochim Biophys Acta Biomembr, 1468, pp. 213-230
  • Von Deuster, C.I.E., Knecht, V., Competing interactions for antimicrobial selectivity based on charge complementarity (2011) Biochim Biophys Acta Biomembr, 1808, pp. 2867-2876
  • Chia, B.C.S., Carver, J.A., Mulhern, T.D., Bowie, J.H., Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata (2000) Solution Structure and Biological Activity. Eur J Biochem, 267, pp. 1894-1908. , https://doi.org/10.1046/j.1432-1327.2000.01089.x
  • Balatti, G.E., Ambroggio, E.E., Fidelio, G.D., Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations (2017) Molecules, 22, p. 1775. , https://doi.org/10.3390/molecules22101775
  • Hopp, T.P., Woods, K.R., Prediction of protein antigenic determinants from amino acid sequences (1981) Immunology, 78, pp. 3824-3828
  • Ambroggio, E.E., Separovic, F., Bowie, J.H., Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein (2005) Biophys J, 89, pp. 1874-1881. , https://doi.org/10.1529/biophysj.105.066589
  • Gehman, J.D., Luc, F., Hall, K., Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes (2008) Biochemistry, 47, pp. 8557-8565. , https://doi.org/10.1021/bi800320v
  • Marcotte, I., Wegener, K.L., Lam, Y.H., Interaction of antimicrobial peptides from Australian amphibians with lipid membranes (2003) Chem Phys Lipids, 122, pp. 107-120
  • Bond, P.J., Parton, D.L., Clark, J.F., Sansom, M.S.P., Coarse-grained simulations of the membrane-active antimicrobial peptide maculatin 1.1 (2008) Biophys J, 95, pp. 3802-3815. , https://doi.org/10.1529/biophysj.108.128686
  • Matsuzaki, K., Sugishita, K.I., Ishibe, N., Relationship of membrane curvature to the formation of pores by magainin 2 (1998) Biochemistry, 37, pp. 11856-11863
  • Schmidt, N.W., Wong, G.C.L., Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering (2013) Curr Opin Solid State Mater Sci, 17, pp. 151-163
  • da Hora, G.C.A., Archilha, N.L., Lopes, J.L.S., Membrane negative curvature induced by a hybrid peptide from pediocin PA-1 and plantaricin 149 as revealed by atomistic molecular dynamics simulations (2016) Soft Matter, 12, pp. 8884-8898
  • Shahmiri, M., Enciso, M., Mechler, A., Controls and constrains of the membrane disrupting action of Aurein 1.2 (2015) Sci Rep, 5 (16378). , https://doi.org/10.1038/srep16378
  • Lorenzón, E.N., Sanches, P.R.S., Nogueira, L.G., Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Candida albicans cells (2013) Amino Acids, 44, pp. 1521-1528. , https://doi.org/10.1007/s00726-013-1475-3
  • Lorenzón, E.N., Piccoli, J.P., Cilli, E.M., Interaction between the antimicrobial peptide Aurein 1.2 dimer and mannans (2014) Amino Acids, 46, pp. 2627-2631
  • Abraham, M.J., Murtola, T., Schulz, R., Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers (2015) SoftwareX, 1-2, pp. 19-25
  • Van Der Spoel, D., Lindahl, E., Hess, B., GROMACS: fast, flexible, and free (2005) J Comput Chem, 26, pp. 1701-1718
  • Lindahl, E., Hess, B., van der Spoel, D., GROMACS 3.0: a package for molecular simulation and trajectory analysis (2001) J Mol Model, 7, pp. 306-317
  • Pronk, S., Páll, S., Schulz, R., GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit (2013) Bioinformatics, 29, pp. 845-854
  • Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation (2008) J Chem Theory Comput, 4, pp. 435-447. , https://doi.org/10.1021/ct700301q
  • Marrink, S.J., de Vries, A.H., Mark, A.E., Coarse grained model for semiquantitative lipid simulations (2004) J Phys Chem B, 108, pp. 750-760. , https://doi.org/10.1021/jp036508g
  • Marrink, S.J., Risselada, H.J., Yefimov, S., The MARTINI forcefield: coarse grained model for biomolecular simulations (2007) J Phys Chem B, 111, pp. 7812-7824
  • De Jong, D.H., Singh, G., Bennett, W.F.D., Improved parameters for the MARTINI coarse-grained protein force field (2013) J Chem Theory Comput, 9, pp. 687-697. , https://doi.org/10.1021/ct300646g
  • Yesylevskyy, S.O., Schäfer, L.V., Sengupta, D., Marrink, S.J., Polarizable water model for the coarse-grained MARTINI force field (2010) PLoS Comput Biol, 6, pp. 1-17
  • Berman, H.M., Westbrook, J., Feng, Z., The Protein Data Bank (2000) Nucleic Acids Res, 28, pp. 235-242. , https://doi.org/10.1093/nar/28.1.235
  • Wang, G., Li, Y., Li, X., Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a nontoxic bacterial membrane anchor (2005) J Biol Chem, 280, pp. 5803-5811
  • Uggerhøj, L.E., Munk, J.K., Hansen, P.R., Structural features of peptoid-peptide hybrids in lipid–water interfaces (2014) FEBS Lett, 588, pp. 3291-3297. , https://doi.org/10.1016/j.febslet.2014.07.016
  • (2015) The Pymol Molecular Graphics System, Version 1.8, , Schrödinger, LLC, New York
  • Joosten, R.P., Te Beek, T.A.H., Krieger, E., A series of PDB related databases for everyday needs (2011) Nucleic Acids Res, 39, pp. D411-D419. , https://doi.org/10.1093/nar/gkq1105
  • Kabsch, W., Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features (1983) Biopolymers, 22, pp. 2577-2637
  • Lee, J., Jung, S.W., Cho, A.E., Molecular insights into the adsorption mechanism of human β-defensin-3 on bacterial membranes (2016) Langmuir, 32, pp. 1782-1790. , https://doi.org/10.1021/acs.langmuir.5b04113
  • Wassenaar, T.A., Ingólfsson, H.I., Böckmann, R.A., Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations (2015) J Chem Theory Comput, 11, pp. 2144-2155
  • Bussi, G., Donadio, D., Parrinello, M., Canonical sampling through velocity rescaling (2007) J Chem Phys, 126 (1), p. 014101
  • Parrinello, M., Polymorphic transitions in single crystals: a new molecular dynamics method (1981) J Appl Phys, 52, p. 7182
  • Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graph, 14, pp. 33-38
  • Stambulchik, E., (2018) Grace Homepage, , http://plasma-gate.weizmann.ac.il/Grace/
  • Marrink, S.J., Tieleman, D.P., Perspective on the MARTINI model (2013) Chem Soc Rev, 42, p. 6801. , https://doi.org/10.1039/c3cs60093a
  • Bennett, W.F.D., Tieleman, D.P., Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining (2011) J Chem Theory Comput, 7, pp. 2981-2988
  • Hugo, A.A., Tymczyszyn, E.E., Gómez-Zavaglia, A., Pérez, P.F., Effect of human defensins on lactobacilli and liposomes (2012) J Appl Microbiol, 113, pp. 1491-1497. , https://doi.org/10.1111/j.1365-2672.2012.05433.x

Citas:

---------- APA ----------
Balatti, G.E., Martini, M.F. & Pickholz, M. (2018) . A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Journal of Molecular Modeling, 24(8).
http://dx.doi.org/10.1007/s00894-018-3747-z
---------- CHICAGO ----------
Balatti, G.E., Martini, M.F., Pickholz, M. "A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures" . Journal of Molecular Modeling 24, no. 8 (2018).
http://dx.doi.org/10.1007/s00894-018-3747-z
---------- MLA ----------
Balatti, G.E., Martini, M.F., Pickholz, M. "A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures" . Journal of Molecular Modeling, vol. 24, no. 8, 2018.
http://dx.doi.org/10.1007/s00894-018-3747-z
---------- VANCOUVER ----------
Balatti, G.E., Martini, M.F., Pickholz, M. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. J. Mol. Model. 2018;24(8).
http://dx.doi.org/10.1007/s00894-018-3747-z