Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


We report a study of the structure of (+)-catechin, which belongs to the family of the flavan-3-ols-one of the five most widely distributed phenolic groups. The biological activities and pharmaceutical utility of these compounds are related to antioxidant activity due to their ability to scavenge free radicals. A breakthrough in the study of the conformational space of this compound, so far absent in the literature, is presented herein. A detailed analysis of the electronic distribution, charge delocalization effects, and stereoelectronic effects is presented following application of the theory of atoms in molecules (AIM) and natural bond orbital analysis. The stability order, and the effects of electron delocalization in the structures were analyzed in depth. The molecular electrostatic potential (MEP) was also obtained, assessing changes in the electronic distribution in aqueous solution, the effects of the solvent on the intrinsic electronic properties, and molecular geometry. The effect of the aqueous solvent on MEP was also quantified, and rationalized by charge delocalization mechanisms, relating them to structural changes and topological properties of the electronic charge density. To further analyze the effects of the aqueous solvent, as well as investigating the molecular and structural properties of these compounds in a biological environment, the polarizabilities for all conformers characterized were also calculated. All results were interpreted on the basis of our accumulated knowledge on (4α→6″, 2α→O→1″)-phenylflavans in previous reports, thus enriching and deepening the analysis of both types of structure. © 2014 Springer-Verlag.


Documento: Artículo
Título:Structure and electronic properties of (+)-catechin: Aqueous solvent effects
Autor:Bentz, E.N.; Pomilio, A.B.; Lobayan, R.M.
Filiación:Instituto de Investigaciones Científicas, Universidad de la Cuenca del Plata, Facultad de Ingeniería, Lavalle 50, 3400 Corrientes, Argentina
Instituto de Bioquímica Y Medicina Molecular IBIMOL (Ex PRALIB), UBA-CONICET, Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas Y Naturales Y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5300, 3400 Corrientes, Argentina
Palabras clave:Antioxidants; Aqueous solvent effect; Atoms in molecules; Density functional theory; Molecular polarizability; Natural bond orbital analysis; PCM model; azadirachtin; methanol; absorption; article; carbon nuclear magnetic resonance; chemical structure; controlled study; density functional theory; dispersion; Monte Carlo method; priority journal; proton nuclear magnetic resonance; surface property; ultraviolet spectroscopy
Título revista:Journal of Molecular Modeling
Título revista abreviado:J. Mol. Model.
CAS:azadirachtin, 11141-17-6; methanol, 67-56-1


  • Visioli, F., Bellomo, G., Galli, C., Free radical-scavenging properties of olive oil polyphenols (1998) Biochemical and Biophysical Research Communications, 247 (1), pp. 60-64. , DOI 10.1006/bbrc.1998.8735
  • Visioli, F., Galli, C., Olive Oil Phenols and Their Potential Effects on Human Health (1998) Journal of Agricultural and Food Chemistry, 46 (10), pp. 4292-4296
  • Mercader, A.G., Pomilio, A.B., (Iso)Flav(an)ones, chalcones, catechins, and theaflavins as anticarcinogens: Mechanisms, anti-multidrug resistance and QSAR studies (2012) Curr Med Chem, 19, pp. 4324-4347
  • Mercader, A.G., Pomilio, A.B., (2011) Biflavonoids: Occurrence, Structural Features and Bioactivity, , Nova Science, New York, 978-1-62100-354-0
  • Mercader, A.G., Pomilio, A.B., Naturally-occurring dimers of flavonoids as anticarcinogens (2013) Anticancer Agents Med Chem, 13 (8), pp. 1217-1235
  • Harborne, J.B., Williams, C.A., Advances in flavonoid research since 1992 (2000) Phytochemistry, 55, pp. 481-504
  • Elhabiri, M., Figueiredo, P., Toki, K., Saito, N., Brouillard, R., Anthocyanin-aluminium and -gallium complexes in aqueous solution (1997) Journal of the Chemical Society. Perkin Transactions 2, (2), pp. 355-362
  • Pérez-González, A., Rebollar-Zepeda, A.M., León-Carmona, J.R., Galano, A., Reactivity indexes and O-Hbond dissociation energies of a large series of polyphenols: Implications for their free radical scavenging activity (2012) J Mex Chem Soc, 56 (3), pp. 241-249
  • Mendoza-Wilson, A.M., Lardizabal-Gutierrez, D., Torres-Moye, E., Fuentes-Cobas, L., Balandran-Quintana, R.R., Camacho-Davila, A., Quintero-Ramos, A., Glossman-Mitnik, D., Optimized structure and thermochemical properties of flavonoids determined by the CHIH(medium)-DFT model chemistry versus experimental techniques (2007) Journal of Molecular Structure, 871 (1-3), pp. 114-130. , DOI 10.1016/j.molstruc.2007.02.008, PII S002228600700155X
  • Mendoza-Wilson, A.M., Glossman-Mitnik, D., Theoretical study of the molecular properties and chemical reactivity of (+)-catechin and (-)-epicatechin related to their antioxidant ability (2006) J Mol Struct THEOCHEM, 761, pp. 97-106
  • Zhang, J., Du, F., Peng, B., Lu, R., Gao, H., Zhou, Z., Structure, electronic properties, and radical scavenging mechanisms of daidzein, genistein, formononetin, and biochanin A: A density functional study (2010) J Mol Struct THEOCHEM, 955, pp. 1-6
  • Markovic, Z.S., Mentus, S.V., Dimitric Markovic, J.M., Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: Implications on in vitro antioxidant activity (2009) J Phys Chem A, 113, pp. 14170-14179
  • Rice-Evans, C.A., Miller, N.J., Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids (1996) Free Radical Biol Med, 7, p. 933. , and references therein
  • Zhang, H.Y., Wang, L.F., Sun, Y.M., Why B-ring is the active center for genistein to scavenge peroxyl radical: A DFT study (2003) Bioorg Med Chem Lett, 13, pp. 909-911
  • Antonczak, S., Electronic description of four flavonoids revisited by DFT method (2008) J Mol Struct THEOCHEM, 856, pp. 38-45
  • Leopoldini, M., Russo, N., Toscano, M., A comparative study of the antioxidant power of flavonoid catechin and its planar analogue (2007) Journal of Agricultural and Food Chemistry, 55 (19), pp. 7944-7949. , DOI 10.1021/jf070449c
  • Lobayan, R.M., Jubert, A.H., Vitale, M.G., Pomilio, A.B., Conformational and electronic (AIM/NBO) study of unsubstituted A-type dimeric proanthocyanidin (2009) J Mol Model, 15, pp. 537-550
  • Bentz, E.N., Jubert, A.H., Pomilio, A.B., Lobayan, R.M., Theoretical study of Z isomers of A-type dimeric proanthocyanidins substituted with R = H, OH and OCH3: Stability and reactivity properties (2010) J Mol Model, 16, pp. 1895-1909
  • Lobayan, R.M., Bentz, E.N., Jubert, A.H., Pomilio, A.B., Structural and electronic properties of Z isomers of (4α → 6",2α → O → 1")-phenylflavans substituted with R = H, OH and OCH3 calculated in aqueous solution with PCM solvation model (2012) J Mol Model, 18, pp. 1667-1676
  • Lobayan, R.M., Bentz, E.N., Jubert, A.H., Pomilio, A.B., Charge delocalization in Z- isomers of (4α → 6", 2α → O → 1")- phenylflavans with R = H, OH and OCH3. Effects on bond dissociation enthalpies and ionization potentials (2013) J Comput Theor Chemistry, 1006, pp. 37-46
  • Olejniczak, S., Potrzebowski, M.J., Solid state NMR studies and density functional theory (DFT) calculations of conformers of quercetin (2004) Org Biomol Chem, 2, pp. 2315-2322
  • Miertus, S., Scrocco, E., Tomasi, J., Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects (1981) J Chem Phys, 55, pp. 117-129
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Pople, J.A., (2003) Gaussian 03, , revision B.02. Gaussian, Pittsburgh
  • Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys Rev B, 37, pp. 785-789
  • Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J Chem Phys, 98, pp. 5648-5652
  • Leopoldini, M., Marino, T., Russo, N., Toscano, M., Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism (2004) J Phys Chem A, 108, pp. 4916-4922
  • Zhang, H.Y., Sun, Y.M., Wang, X.L., Substituent effects on O-H bond dissociation enthalpies and ionization potentials of catechols: A dft study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants (2003) Chem-A Eur J, 9, pp. 502-508
  • Bader, R.F.W., (1995) Atoms in Molecules - A Quantum Theory, , Oxford University Press, Oxford
  • Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., NBO 3.1. Program As Implemented in the Gaussian 98 Package, , Gaussian, Wallingford, CT
  • Biegler-Koning, F.W., Bader, R.F.W., Tang, T.H., Calculation of the average properties of atoms in molecules II (1982) J Comput Chem, 3, pp. 317-328
  • Flúkiger, P., Lúthi, H.P., Portmann, S., Weber, J., (2000) Molekel 4.0, , Swiss Center for Scientific Computing, Manno
  • Bader, R.F.W., A quantum theory of molecular structure and its applications (1990) Chem Rev, 91, pp. 893-928
  • Bader, R.F.W., A bond path: A universal indicator of bonded interactions (1998) J Phys Chem A, 102, pp. 7314-7323
  • Politzer, P., Landry, S.J., Warnheim, T., Proposed procedure for using electrostatic potentials to predict and interpret nucleophilic processes (1982) J Phys Chem, 86, pp. 4767-4771
  • Politzer, P., Abrahmsen, L., Sjoberg, P., EFFECTS OF AMINO AND NITRO SUBSTITUENTS UPON THE ELECTROSTATIC POTENTIAL OF AN AROMATIC RING. (1984) Journal of the American Chemical Society, 106 (4), pp. 855-860
  • Politzer, P., Laurence, P.R., Jayasuriya, K., Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena (1985) Environmental Health Perspectives, VOL. 61, pp. 191-202
  • Roy, D.K., Balanarayan, P., Gadre, S.R., Signatures of molecular recognition from the topography of electrostatic potential (2009) J. Chem Sci, 121, pp. 815-821
  • Politzer, P., Truhlar, D.G., (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials, , Plenum, New York
  • Aparicio, S., A systematic computacional study on flavonoids (2010) Int J Mol Sci, 11, pp. 2017-2038
  • Desiraju, G.R., Steiner, T., (1999) The Weak Hydrogen Bond in Structural Chemistry and Biology, , Oxford University Press, New York
  • Weber, K.C., Honorio, K.M., Bruni, A.T., Silva, A.B.F., The use of classification methods for modeling the antioxidant activity of flavonoid compounds (2006) Journal of Molecular Modeling, 12 (6), pp. 915-920. , DOI 10.1007/s00894-005-0083-x


---------- APA ----------
Bentz, E.N., Pomilio, A.B. & Lobayan, R.M. (2014) . Structure and electronic properties of (+)-catechin: Aqueous solvent effects. Journal of Molecular Modeling, 20(2).
---------- CHICAGO ----------
Bentz, E.N., Pomilio, A.B., Lobayan, R.M. "Structure and electronic properties of (+)-catechin: Aqueous solvent effects" . Journal of Molecular Modeling 20, no. 2 (2014).
---------- MLA ----------
Bentz, E.N., Pomilio, A.B., Lobayan, R.M. "Structure and electronic properties of (+)-catechin: Aqueous solvent effects" . Journal of Molecular Modeling, vol. 20, no. 2, 2014.
---------- VANCOUVER ----------
Bentz, E.N., Pomilio, A.B., Lobayan, R.M. Structure and electronic properties of (+)-catechin: Aqueous solvent effects. J. Mol. Model. 2014;20(2).