Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A generalization of the nonautonomous Mackey–Glass equation for the regulation of the hematopoiesis with several non-constant delays is studied. Using topological degree methods we prove, under appropriate conditions, the existence of multiple positive periodic solutions. Moreover, we show that the conditions are necessary, in the sense that if some sort of complementary conditions are assumed then the trivial equilibrium is a global attractor for the positive solutions and hence periodic solutions do not exist. © 2016, Korean Society for Computational and Applied Mathematics.

Registro:

Documento: Artículo
Título:Existence and multiplicity of periodic solutions for a generalized hematopoiesis model
Autor:Amster, P.; Balderrama, R.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IMAS-CONICET, Buenos Aires, Argentina
Palabras clave:Degree theory; Global attractor; Hematopoiesis; Multiplicity; Nonlinear nonautonomous delay differential equations; Positive periodic solutions; Blood; Differential equations; Nonlinear equations; Topology; Degree theory; Global attractor; Hematopoiesis; Multiplicity; Nonlinear nonautonomous delay differential equations; Positive periodic solution; Problem solving
Año:2017
Volumen:55
Número:1-2
Página de inicio:591
Página de fin:607
DOI: http://dx.doi.org/10.1007/s12190-016-1051-6
Título revista:Journal of Applied Mathematics and Computing
Título revista abreviado:J. Appl. Math. Comp.
ISSN:15985865
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15985865_v55_n1-2_p591_Amster

Referencias:

  • Amster, P., Idels, L., Periodic solutions in general scalar non-autonomous models with delays (2013) Nonlinear Diff. Equ. Appl. NoDEA, 20, pp. 1577-1596
  • Bai, D., Xu, Y., Periodic solutions of first order functional differential equations with periodic deviations (2007) Comput. Math. Appl., 53, pp. 1361-1366
  • Berezansky, L., Braverman, E., On existence of positive solutions for linear difference equations with several delays (2006) Adv. Dyn. Syst. Appl., 1 (1), pp. 29-47
  • Chen, Y., Huang, L., Existence and global attractivity of a positive periodic solution of a delayed periodic respiration model (2005) Comput. Math. Appl., 49, pp. 677-687
  • Glass, L., Beuter, A., Larocque, D., Time delays, oscillations, and chaos in physiological control systems (1988) Math. Biosci., 90, pp. 111-125
  • Gopalsamy, K., Trofimchuk, S.L., Bantsur, N.R., A note on global attractivity in models of hematopoiesis (1998) Ukr. Math. J., 50 (1), pp. 3-12
  • Han, F., Wang, Q., Existence of multiple positive periodic solutions for differential equation with state-dependent delays (2006) J. Math. Anal. Appl., 324, pp. 908-920
  • Li, Y., Kuang, Y., Periodic solutions of periodic delay Lotka–Volterra equations and systems (2001) J. Math. Anal. Appl., 255, pp. 260-280
  • Liu, G., Yan, J., Zhang, F., Existence and global attractivity of unique positive periodic solution for a model of hematopoiesis (2007) J. Math. Anal. Appl., 334, pp. 157-171
  • Mackey, M.C., Glass, L., Oscillation and chaos in physiological control systems (1977) Science, 197, pp. 287-289
  • Murray, J.D., (2002) Mathematical Biology. I. An Introduction, , Springer, Berlin
  • Nicholson, A.J., The balance of animal population (1933) J. Anim. Ecol., 2, pp. 132-178
  • Padhi, S., Srivastava, S., Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics (2008) Appl. Math. Comput., 203 (1), pp. 1-6
  • Padhi, S., Srivastava, S., Dix, J., Existence of three nonnegative periodic solutions for functional differential equations and applications to hematopoiesis (2009) Panam. Math. J., 19, pp. 27-36
  • Padhi, S., Srivastava, S., Pati, S., Three periodic solutions for a nonlinear first order functional differential equation (2010) Appl. Math. Comput., 216, pp. 2450-2456
  • Saker, S.H., Agarwal, S., Oscillation and global attractivity in a nonlinear delay periodic model of population dynamics (2002) Appl. Anal., 81, pp. 787-799
  • Wan, A., Jiang, D., Existence of positive periodic solutions for functional differential equations (2002) Kyushu J. Math., 56, pp. 193-202
  • Wan, A., Jiang, D., Xu, X., A new existence theory for positive periodic solutions to functional differential equations (2004) Comput. Math. Appl., 47, pp. 1257-1262
  • Wang, W., Lai, B., Periodic solutions for a class of functional differential system (2012) Arch. Math., 48 (2), pp. 139-148
  • Wu, X., Li, J., Zhou, H., A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis (2007) Comput. Math. Appl., 54, pp. 840-849
  • Ye, D., Fan, M., Wang, H., Periodic solutions for scalar functional differential equations (2005) Nonlinear Anal., 52, pp. 1157-1181
  • Zhang, W., Zhu, D., Bi, P., Existence of periodic solutions of a scalar functional differential equation via a fixed point theorem (2007) Math. Comput. Model., 46, pp. 718-729

Citas:

---------- APA ----------
Amster, P. & Balderrama, R. (2017) . Existence and multiplicity of periodic solutions for a generalized hematopoiesis model. Journal of Applied Mathematics and Computing, 55(1-2), 591-607.
http://dx.doi.org/10.1007/s12190-016-1051-6
---------- CHICAGO ----------
Amster, P., Balderrama, R. "Existence and multiplicity of periodic solutions for a generalized hematopoiesis model" . Journal of Applied Mathematics and Computing 55, no. 1-2 (2017) : 591-607.
http://dx.doi.org/10.1007/s12190-016-1051-6
---------- MLA ----------
Amster, P., Balderrama, R. "Existence and multiplicity of periodic solutions for a generalized hematopoiesis model" . Journal of Applied Mathematics and Computing, vol. 55, no. 1-2, 2017, pp. 591-607.
http://dx.doi.org/10.1007/s12190-016-1051-6
---------- VANCOUVER ----------
Amster, P., Balderrama, R. Existence and multiplicity of periodic solutions for a generalized hematopoiesis model. J. Appl. Math. Comp. 2017;55(1-2):591-607.
http://dx.doi.org/10.1007/s12190-016-1051-6