Artículo

Liberman, A.C.; Castro, C.N.; Noguerol, M.A.; Tabarrozzi, A.E.B.; Druker, J.; Perone, M.J.; Arzt, E. "Molecular mechanisms of glucocorticoids action: From basic research to clinical implications" (2010) Current Immunology Reviews. 6(4):371-380
Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

Glucocorticoid (GCs) hormones have pleiotropic activities in the body playing important roles in metabolism and modulating/regulating the stress and immune responses. Upon stimuli that trigger immune or inflammatory responses there is a concomitant activation of the hypothalamus-pituitary-adrenal axis ultimately manifested by an increase in the synthesis and release of GCs to the systemic circulation. GCs play a pivotal role in the interface between the neuroendocrine and immune systems by modulating the final outcome of the immune response. The successful resolution of an immune response depends on the fine tune interplay between GCs and cytokines. The interaction between intracellular signals elicited by cytokines and the activated glucocorticoid receptor (GR) results in the induction or repression of gene transcription coordinating an effective immune response, and then its resolution avoiding excessive deleterious reactions. Herein, we describe recent knowledge regarding basic research in the complex interaction between GCs and components of the immune system at cellular and molecular levels, as well as their clinical implications for health and disease. The benefits of therapeutic GCs controlling immune disorders as well as their misconduct are also discussed in terms of considering the benefits and adverse effects to control disease and inflammation. © 2010 Bentham Science Publishers Ltd.

Registro:

Documento: Artículo
Título:Molecular mechanisms of glucocorticoids action: From basic research to clinical implications
Autor:Liberman, A.C.; Castro, C.N.; Noguerol, M.A.; Tabarrozzi, A.E.B.; Druker, J.; Perone, M.J.; Arzt, E.
Filiación:Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires y IFIBYNE-CONICET, Buenos Aires, Argentina
Palabras clave:Glucocorticoids; Inflammation; Molecular interaction; Transcription factors; aziridine derivative; BRG1 protein; coactivator associated arginine methyltransferase 1; compound a; corticosteroid derivative; cyclic AMP responsive element binding protein binding protein; deoxyribonuclease I; glucocorticoid; glucocorticoid receptor; histone acetyltransferase; immunoglobulin enhancer binding protein; methyltransferase; mitogen activated protein kinase; nuclear receptor coactivator 2; phenylethanolamine n methyltransferase; phosphatidylinositol 3 kinase; phosphoenolpyruvate carboxykinase (GTP); protein kinase B; protein p300; ru 24858; steroid receptor coactivator 1; transcription factor AP 1; tyrosine aminotransferase; unclassified drug; antiinflammatory activity; article; cellular immunity; chronic inflammation; conformational transition; DNA binding; drug mechanism; gene expression regulation; gene induction; gene repression; genetic transcription; hormone responsive element; human; hypothalamus hypophysis adrenal system; immune system; inflammatory disease; molecular biology; priority journal; protein DNA interaction; protein protein interaction; transactivation; transcription regulation
Año:2010
Volumen:6
Número:4
Página de inicio:371
Página de fin:380
Título revista:Current Immunology Reviews
Título revista abreviado:Curr. Immunol. Rev.
ISSN:15733955
CAS:cyclic AMP responsive element binding protein binding protein, 190209-80-4; deoxyribonuclease I, 9003-98-9; histone acetyltransferase, 9054-51-7; methyltransferase, 9033-25-4; mitogen activated protein kinase, 142243-02-5; phenylethanolamine n methyltransferase, 9037-68-7; phosphatidylinositol 3 kinase, 115926-52-8; phosphoenolpyruvate carboxykinase (GTP), 9013-08-5; protein kinase B, 148640-14-6; tyrosine aminotransferase, 9014-55-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p371_Liberman

Referencias:

  • Besedovsky, H.O., del Rey, A., Immune-neuroendocrine circuits: Integrative role of cytokines (1992) Front Neuroendocrinol, 13, pp. 61-94
  • Refojo, D., Liberman, A.C., Giacomini, D., Integrating systemic information at the molecular level: Cross-talk between steroid receptors and cytokine signaling on different target cells (2003) Ann N Y Acad Sci, 992, pp. 196-204
  • Refojo, D., Liberman, A.C., Holsboer, F., Arzt, E., Transcription factormediated molecular mechanisms involved in the functional crosstalk between cytokines and glucocorticoids (2001) Immunol Cell Biol, 79, pp. 385-394
  • Liberman, A.C., Refojo, D., Arzt, E., Cytokine signaling/transcription factor cross-talk in T cell activation and Th1-Th2 differentiation (2003) Arch Immunol Ther Exp (Warsz), 51, pp. 351-365
  • Liberman, A.C., Druker, J., Garcia, F.A., Holsboer, F., Arzt, E., Intracellular molecular signaling. Basis for specificity to glucocorticoid anti-inflammatory actions (2009) Ann N Y Acad Sci, 1153, pp. 6-13
  • Liberman, A.C., Druker, J., Perone, M.J., Arzt, E., Glucocorticoids in the regulation of transcription factors that control cytokine synthesis (2007) Cytokine Growth Factor Rev, 18, pp. 45-56
  • Druker, J., Liberman, A.C., Acuna, M., Molecular understanding of cytokine-steroid hormone dialogue: Implications for human diseases (2006) Ann N Y Acad Sci, 1088, pp. 297-306
  • Rhen, T., Cidlowski, J.A., Antiinflammatory action of glucocorticoids-new mechanisms for old drugs (2005) N Engl J Med, 353, pp. 1711-1723
  • Stahn, C., Lowenberg, M., Hommes, D.W., Buttgereit, F., Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists (2007) Mol Cell Endocrinol, 275, pp. 71-78
  • Schmidt, B.M., Gerdes, D., Feuring, M., Falkenstein, E., Christ, M., Wehling, M., Rapid, nongenomic steroid actions: A new age? (2000) Front Neuroendocrinol, 21, pp. 57-94
  • Croxtall, J.D., Choudhury, Q., Flower, R.J., Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcriptionindependent mechanism (2000) Br J Pharmacol, 130, pp. 289-298
  • Buttgereit, F., Scheffold, A., Rapid glucocorticoid effects on immune cells (2002) Steroids, 67, pp. 529-534
  • Limbourg, F.P., Huang, Z., Plumier, J.C., Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids (2002) J Clin Invest, 110, pp. 1729-1738
  • Buttgereit, F., Straub, R.H., Wehling, M., Burmester, G.R., Glucocorticoids in the treatment of rheumatic diseases: An update on the mechanisms of action (2004) Arthritis Rheum, 50, pp. 3408-3417
  • Song, I.H., Gold, R., Straub, R.H., Burmester, G.R., Buttgereit, F., New Glucocorticoids on the Horizon: Repress, Don't Activate! (2005) J Rheumatol, 32, pp. 1199-1207
  • Lowenberg, M., Tuynman, J., Bilderbeek, J., Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn (2005) Blood, 106, pp. 1703-1710
  • Lowenberg, M., Verhaar, A.P., Bilderbeek, J., Glucocorticoids cause rapid dissociation of a T-cell-receptor-associated protein complex containing LCK and FYN (2006) EMBO Rep, 7, pp. 1023-1029
  • Schacke, H., Schottelius, A., Docke, W.D., Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects (2004) Proc Natl Acad Sci USA, 101, pp. 227-232
  • Thompson, E.B., Steroids, gene expression, and apoptosis: Recollections of contributions and controversies (1998) Steroids, 63, pp. 368-374
  • Ismaili, N., Garabedian, M.J., Modulation of glucocorticoid receptor function via phosphorylation (2004) Ann N Y Acad Sci, 1024, pp. 86-101
  • Pratt, W.B., Toft, D.O., Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery (2003) Exp Biol Med (Maywood), 228, pp. 111-133
  • Savory, J.G., Hsu, B., Laquian, I.R., Discrimination between NL1-and NL2-mediated nuclear localization of the glucocorticoid receptor (1999) Mol Cell Biol, 19, pp. 1025-1037
  • de Bosscher, K., Vanden Berghe, W., Haegeman, G., The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: Molecular mechanisms for gene repression (2003) Endocr Rev, 24, pp. 488-522
  • Ashwell, J.D., Lu, F.W., Vacchio, M.S., Glucocorticoids in T cell development and function* (2000) Annu Rev Immunol, 18, pp. 309-345
  • Becker, P.B., Gloss, B., Schmid, W., Strahle, U., Schutz, G., In vivo protein-DNA interactions in a glucocorticoid response element require the presence of the hormone (1986) Nature, 324, pp. 686-688
  • Carrigan, A., Walther, R.F., Salem, H.A., An active nuclear retention signal in the glucocorticoid receptor functions as a strong inducer of transcriptional activation (2007) J Biol Chem, 282, pp. 10963-10971
  • Meijsing, S.H., Elbi, C., Luecke, H.F., Hager, G.L., Yamamoto, K.R., The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release (2007) Mol Cell Biol, 27, pp. 2442-2451
  • Felts, S.J., Toft, D.O., P23, a simple protein with complex activities (2003) Cell Stress Chaperones, 8, pp. 108-113
  • Fletcher, T.M., Xiao, N., Mautino, G., ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling (2002) Mol Cell Biol, 22, pp. 3255-3263
  • Freeman, B.C., Felts, S.J., Toft, D.O., Yamamoto, K.R., The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies (2000) Genes Dev, 14, pp. 422-434
  • John, S., Sabo, P.J., Johnson, T.A., Interaction of the glucocorticoid receptor with the chromatin landscape (2008) Mol Cell, 29, pp. 611-624
  • Yoshinaga, S.K., Peterson, C.L., Herskowitz, I., Yamamoto, K.R., Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors (1992) Science, 258, pp. 1598-1604
  • Cairns, B.R., Levinson, R.S., Yamamoto, K.R., Kornberg, R.D., Essential role of Swp73p in the function of yeast Swi/Snf complex (1996) Genes Dev, 10, pp. 2131-2144
  • He, Y., Simons Jr., S.S., STAMP, a novel predicted factor assisting TIF2 actions in glucocorticoid receptor-mediated induction and repression (2007) Mol Cell Biol, 27, pp. 1467-1485
  • Strahl, B.D., Briggs, S.D., Brame, C.J., Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1 (2001) Curr Biol, 11, pp. 996-1000
  • Chen, D., Ma, H., Hong, H., Regulation of transcription by a protein methyltransferase (1999) Science, 284, pp. 2174-2177
  • Banach, T., Zurowski, D., Gil, K., Weisbrodt, N.W., Rosenfeld, G., Thor, P.J., Peripheral mechanisms of intestinal dysmotility in the morphine tolerant and dependent rats (2006) J Physiol Pharmacol, 57, pp. 73-82
  • Kleiman, A., Tuckermann, J.P., Glucocorticoid receptor action in beneficial and side effects of steroid therapy: Lessons from conditional knockout mice (2007) Mol Cell Endocrinol, 275, pp. 98-108
  • Newton, R., Holden, N.S., Separating transrepression and transactivation: A distressing divorce for the glucocorticoid receptor? (2007) Mol Pharmacol, 72, pp. 799-809
  • Tobler, A., Meier, R., Seitz, M., Dewald, B., Baggiolini, M., Fey, M.F., Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts (1992) Blood, 79, pp. 45-51
  • Newton, R., Hart, L.A., Stevens, D.A., Effect of dexamethasone on interleukin-1beta-(IL-1beta)-induced nuclear factor-kappaB (NF-kappaB) and kappaB-dependent transcription in epithelial cells (1998) Eur J Biochem, 254, pp. 81-89
  • Chivers, J.E., Gong, W., King, E.M., Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids (2006) Mol Pharmacol, 70, pp. 2084-2095
  • Poon, M., Liu, B., Taubman, M.B., Identification of a novel dexamethasone-sensitive RNA-destabilizing region on rat monocyte chemoattractant protein 1 mRNA (1999) Mol Cell Biol, 19, pp. 6471-6478
  • Lasa, M., Brook, M., Saklatvala, J., Clark, A.R., Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogenactivated protein kinase p38 (2001) Mol Cell Biol, 21, pp. 771-780
  • Lai, W.S., Carballo, E., Strum, J.R., Kennington, E.A., Phillips, R.S., Blackshear, P.J., Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA (1999) Mol Cell Biol, 19, pp. 4311-4323
  • Dean, J.L., Sully, G., Clark, A.R., Saklatvala, J., The involvement of AUrich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation (2004) Cell Signal, 16, pp. 1113-1121
  • Zhao, Q., Shepherd, E.G., Manson, M.E., Nelin, L.D., Sorokin, A., Liu, Y., The role of mitogen-activated protein kinase phosphatase-1 in the response of alveolar macrophages to lipopolysaccharide: Attenuation of proinflammatory cytokine biosynthesis via feedback control of p38 (2005) J Biol Chem, 280, pp. 8101-8108
  • Lasa, M., Abraham, S.M., Boucheron, C., Saklatvala, J., Clark, A.R., Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38 (2002) Mol Cell Biol, 22, pp. 7802-7811
  • Newton, R., Holden, N., Inhibitors of p38 mitogen-activated protein kinase: Potential as anti-inflammatory agents in asthma? (2003) Bio Drugs, 17, pp. 113-129
  • Wesselborg, S., Bauer, M.K., Vogt, M., Schmitz, M.L., Schulze-Osthoff, K., Activation of transcription factor NF-kappaB and p38 mitogenactivated protein kinase is mediated by distinct and separate stress effector pathways (1997) J Biol Chem, 272, pp. 12422-12429
  • Ayroldi, E., Riccardi, C., Glucocorticoid-induced leucine zipper (GILZ): A new important mediator of glucocorticoid action (2009) FASEB J
  • Godot, V., Garcia, G., Capel, F., Dexamethasone and IL-10 stimulate glucocorticoid-induced leucine zipper synthesis by human mast cells (2006) Allergy, 61, pp. 886-890
  • Eddleston, J., Herschbach, J., Wagelie-Steffen, A.L., Christiansen, S.C., Zuraw, B.L., The anti-inflammatory effect of glucocorticoids is mediated by glucocorticoid-induced leucine zipper in epithelial cells (2007) J Allergy Clin Immunol, 119, pp. 115-122
  • Ayroldi, E., Zollo, O., Macchiarulo, A., Di Marco, B., Marchetti, C., Riccardi, C., Glucocorticoid-induced leucine zipper inhibits the Rafextracellular signal-regulated kinase pathway by binding to Raf-1 (2002) Mol Cell Biol, 22, pp. 7929-7941
  • Webster, J.C., Jewell, C.M., Bodwell, J.E., Munck, A., Sar, M., Cidlowski, J.A., Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein (1997) J Biol Chem, 272, pp. 9287-9293
  • Hittelman, A.B., Burakov, D., Iniguez-Lluhi, J.A., Freedman, L.P., Garabedian, M.J., Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins (1999) EMBO J, 18, pp. 5380-5388
  • Itoh, M., Adachi, M., Yasui, H., Takekawa, M., Tanaka, H., Imai, K., Nuclear export of glucocorticoid receptor is enhanced by c-Jun Nterminal kinase-mediated phosphorylation (2002) Mol Endocrinol, 16, pp. 2382-2392
  • Krstic, M.D., Rogatsky, I., Yamamoto, K.R., Garabedian, M.J., Mitogenactivated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor (1997) Mol Cell Biol, 17, pp. 3947-3954
  • Rogatsky, I., Logan, S.K., Garabedian, M.J., Antagonism of glucocorticoid receptor transcriptional activation by the c-Jun Nterminal kinase (1998) Proc Natl Acad Sci USA, 95, pp. 2050-2055
  • Szatmary, Z., Garabedian, M.J., Vilcek, J., Inhibition of glucocorticoid receptor-mediated transcriptional activation by p38 mitogenactivated protein (MAP) kinase (2004) J Biol Chem, 279, pp. 43708-43715
  • Irusen, E., Matthews, J.G., Takahashi, A., Barnes, P.J., Chung, K.F., Adcock, I.M., P38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: Role in steroid-insensitive asthma (2002) J Allergy Clin Immunol, 109, pp. 649-657
  • Chen, M.S., Silverstein, A.M., Pratt, W.B., Chinkers, M., The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant (1996) J Biol Chem, 271, pp. 32315-32320
  • Somers, J.P., Defranco, D.B., Effects of okadaic acid, a protein phosphatase inhibitor, on glucocorticoid receptor-mediated enhancement (1992) Mol Endocrinol, 6, pp. 26-34
  • Defranco, D.B., Qi, M., Borror, K.C., Garabedian, M.J., Brautigan, D.L., Protein phosphatase types 1 and/or 2A regulate nucleocytoplasmic shuttling of glucocorticoid receptors (1991) Mol Endocrinol, 5, pp. 1215-1228
  • de Bosscher, K., Haegeman, G., Minireview: Latest perspectives on antiinflammatory actions of glucocorticoids (2009) Mol Endocrinol, 23, pp. 281-291
  • Beato, M., Herrlich, P., Schutz, G., Steroid hormone receptors: Many actors in search of a plot (1995) Cell, 83, pp. 851-857
  • Stocklin, E., Wissler, M., Gouilleux, F., Groner, B., Functional interactions between Stat5 and the glucocorticoid receptor (1996) Nature, 383, pp. 726-728
  • Liberman, A.C., Refojo, D., Druker, J., The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction (2007) FASEB J, 21, pp. 1177-1188
  • Ohtsuka, T., Kubota, A., Hirano, T., Glucocorticoid-mediated gene suppression of rat cytokine-induced neutrophil chemoattractant CINC/gro, a member of the interleukin-8 family, through impairment of NF-kappa B activation (1996) J Biol Chem, 271, pp. 1651-1659
  • Mukaida, N., Morita, M., Ishikawa, Y., Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor-kappa B is target for glucocorticoid-mediated interleukin 8 gene repression (1994) J Biol Chem, 269, pp. 13289-13295
  • Kleinert, H., Euchenhofer, C., Ihrig-Biedert, I., Forstermann, U., In murine 3T3 fibroblasts, different second messenger pathways resulting in the induction of NO synthase II (iNOS) converge in the activation of transcription factor NF-kappaB (1996) J Biol Chem, 271, pp. 6039-6044
  • Brostjan, C., Anrather, J., Csizmadia, V., Natarajan, G., Winkler, H., Glucocorticoids inhibit E-selectin expression by targeting NFkappaB and not ATF/c-Jun (1997) J Immunol, 158, pp. 3836-3844
  • van de Stolpe, A., Caldenhoven, E., Stade, B.G., 12-Otetradecanoylphorbol-13-acetate-and tumor necrosis factor alphamediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter (1994) J Biol Chem, 269, pp. 6185-6192
  • Simpson, C.S., Morris, B.J., Activation of nuclear factor kappaB by nitric oxide in rat striatal neurones: Differential inhibition of the p50 and p65 subunits by dexamethasone (1999) J Neurochem, 73, pp. 353-361
  • Kurokouchi, K., Kambe, F., Kikumori, T., Effects of glucocorticoids on tumor necrosis factor alpha-dependent activation of nuclear factor kappaB and expression of the intercellular adhesion molecule 1 gene in osteoblast-like ROS17/2.8 cells (2000) J Bone Miner Res, 15, pp. 1707-1715
  • Scheinman, R.I., Cogswell, P.C., Lofquist, A.K., Baldwin Jr., A.S., Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids (1995) Science, 270, pp. 283-286
  • Auphan, N., Didonato, J.A., Rosette, C., Helmberg, A., Karin, M., Immunosuppression by glucocorticoids: Inhibition of NF-kappa B activity through induction of I kappa B synthesis (1995) Science, 270, pp. 286-290
  • Jonat, C., Rahmsdorf, H.J., Park, K.K., Antitumor promotion and antiinflammation: Down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone (1990) Cell, 62, pp. 1189-1204
  • Konig, H., Ponta, H., Rahmsdorf, H.J., Herrlich, P., Interference between pathway-specific transcription factors: Glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo (1992) EMBO J, 11, pp. 2241-2246
  • Adcock, I.M., Ito, K., Barnes, P.J., Glucocorticoids: Effects on gene transcription (2004) Proc Am Thorac Soc, 1, pp. 247-254
  • Lonard, D.M., O'Malley, B.W., Nuclear receptor coregulators: Judges, juries, and executioners of cellular regulation (2007) Mol Cell, 27, pp. 691-700
  • Huang, Z.Q., Li, J., Sachs, L.M., Cole, P.A., Wong, J., A role for cofactorcofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription (2003) EMBO J, 22, pp. 2146-2155
  • de Bosscher, K., Vanden Berghe, W., Haegeman, G., Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: Negative interference of activated glucocorticoid receptor with transcription factors (2000) J Neuroimmunol, 109, pp. 16-22
  • de Bosscher, K., Vanden Berghe, W., Haegeman, G., Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators (2001) Mol Endocrinol, 15, pp. 219-227
  • Ito, K., Jazrawi, E., Cosio, B., Barnes, P.J., Adcock, I.M., P65-activated histone acetyltransferase activity is repressed by glucocorticoids: Mifepristone fails to recruit HDAC2 to the p65-HAT complex (2001) J Biol Chem, 276, pp. 30208-30215
  • Ito, K., Barnes, P.J., Adcock, I.M., Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12 (2000) Mol Cell Biol, 20, pp. 6891-6903
  • Luecke, H.F., Yamamoto, K.R., The glucocorticoid receptor blocks PTEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression (2005) Genes Dev, 19, pp. 1116-1127
  • Nissen, R.M., Yamamoto, K.R., The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain (2000) Genes Dev, 14, pp. 2314-2329
  • Beck, I.M., Vanden Berghe, W., Vermeulen, L., Altered subcellular distribution of MSK1 induced by glucocorticoids contributes to NF-kappaB inhibition (2008) EMBO J, 27, pp. 1682-1693
  • Heck, S., Kullmann, M., Gast, A., A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1 (1994) EMBO J, 13, pp. 4087-4095
  • Liden, J., Delaunay, F., Rafter, I., Gustafsson, J., Okret, S., A new function for the C-terminal zinc finger of the glucocorticoid receptor. Repression of RelA transactivation (1997) J Biol Chem, 272, pp. 21467-21472
  • Caldenhoven, E., Liden, J., Wissink, S., Negative cross-talk between RelA and the glucocorticoid receptor: A possible mechanism for the antiinflammatory action of glucocorticoids (1995) Mol Endocrinol, 9, pp. 401-412
  • Scheinman, R.I., Gualberto, A., Jewell, C.M., Cidlowski, J.A., Baldwin Jr., A.S., Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors (1995) Mol Cell Biol, 15, pp. 943-953
  • Liberman, A.C., Druker, J., Refojo, D., Holsboer, F., Arzt, E., Glucocorticoids inhibit GATA-3 phosphorylation and activity in T cells (2009) FASEB J, 23, pp. 1558-1571
  • Maneechotesuwan, K., Yao, X., Ito, K., Suppression of GATA-3 nuclear import and phosphorylation: A novel mechanism of corticosteroid action in allergic disease (2009) PLoS Med, 6, pp. e1000076
  • Ou, X.M., Chen, K., Shih, J.C., Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1 (2006) J Biol Chem, 281, pp. 21512-21525
  • Tuckermann, J.P., Reichardt, H.M., Arribas, R., Richter, K.H., Schutz, G., Angel, P., The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin (1999) J Cell Biol, 147, pp. 1365-1370
  • Reichardt, H.M., Kaestner, K.H., Tuckermann, J., DNA binding of the glucocorticoid receptor is not essential for survival (1998) Cell, 93, pp. 531-541
  • Reichardt, H.M., Tuckermann, J.P., Gottlicher, M., Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor (2001) EMBO J, 20, pp. 7168-7173
  • Tai, T.C., Claycomb, R., Her, S., Bloom, A.K., Wong, D.L., Glucocorticoid responsiveness of the rat phenylethanolamine N-methyltransferase gene (2002) Mol Pharmacol, 61, pp. 1385-1392
  • Adams, M., Meijer, O.C., Wang, J., Bhargava, A., Pearce, D., Homodimerization of the glucocorticoid receptor is not essential for response element binding: Activation of the phenylethanolamine N-methyltransferase gene by dimerization-defective mutants (2003) Mol Endocrinol, 17, pp. 2583-2592
  • Abraham, S.M., Lawrence, T., Kleiman, A., Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1 (2006) J Exp Med, 203, pp. 1883-1889
  • Belvisi, M.G., Wicks, S.L., Battram, C.H., Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity (2001) J Immunol, 166, pp. 1975-1982
  • Vayssiere, B.M., Dupont, S., Choquart, A., Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo (1997) Mol Endocrinol, 11, pp. 1245-1255
  • de Bosscher, K., Vanden Berghe, W., Beck, I.M., A fully dissociated compound of plant origin for inflammatory gene repression (2005) Proc Natl Acad Sci USA, 102, pp. 15827-15832
  • Dewint, P., Gossye, V., de Bosscher, K., A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis (2008) J Immunol, 180, pp. 2608-2615
  • Zhang, Z., Zhang, Z.Y., Schluesener, H.J., Compound A, a plant origin ligand of glucocorticoid receptors, increases regulatory T cells and M2 macrophages to attenuate experimental autoimmune neuritis with reduced side effects (2009) J Immunol, 183, pp. 3081-3091
  • So, A.Y., Chaivorapol, C., Bolton, E.C., Li, H., Yamamoto, K.R., Determinants of cell-and gene-specific transcriptional regulation by the glucocorticoid receptor (2007) PLoS Genet, 3, pp. e94
  • Besedovsky, H.O., del Rey, A., Regulating inflammation by glucocorticoids (2006) Nat Immunol, 7, p. 537
  • Leung, D.Y., Bloom, J.W., Update on glucocorticoid action and resistance (2003) J Allergy Clin Immunol, 111, pp. 3-22. , quiz 23
  • Bauer, M.E., Papadopoulos, A., Poon, L., Altered glucocorticoid immunoregulation in treatment resistant depression (2003) Psychoneuroendocrinology, 28, pp. 49-65
  • Bauer, M.E., Vedhara, K., Perks, P., Wilcock, G.K., Lightman, S.L., Shanks, N., Chronic stress in caregivers of dementia patients is associated with reduced lymphocyte sensitivity to glucocorticoids (2000) J Neuroimmunol, 103, pp. 84-92
  • Luz, C., Collaziol, D., Preissler, T., da Cruz, I.M., Glock, L., Bauer, M.E., Healthy aging is associated with unaltered production of immunoreactive growth hormone but impaired neuroimmunomodulation (2006) Neuroimmunomodulation, 13, pp. 160-169
  • Hearing, S.D., Norman, M., Smyth, C., Foy, C., Dayan, C.M., Wide variation in lymphocyte steroid sensitivity among healthy human volunteers (1999) J Clin Endocrinol Metab, 84, pp. 4149-4154
  • van den Akker, E.L., Russcher, H., van Rossum, E.F., Glucocorticoid receptor polymorphism affects transrepression but not transactivation (2006) J Clin Endocrinol Metab, 91, pp. 2800-2803
  • Webster, J.C., Oakley, R.H., Jewell, C.M., Cidlowski, J.A., Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: A mechanism for the generation of glucocorticoid resistance (2001) Proc Natl Acad Sci USA, 98, pp. 6865-6870
  • Galigniana, M.D., Piwien-Pilipuk, G., Assreuy, J., Inhibition of glucocorticoid receptor binding by nitric oxide (1999) Mol Pharmacol, 55, pp. 317-323
  • Wallace, A.D., Cidlowski, J.A., Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids (2001) J Biol Chem, 276, pp. 42714-42721
  • Levitt, N.S., Lambert, E.V., Woods, D., Hales, C.N., Andrew, R., Seckl, J.R., Impaired glucose tolerance and elevated blood pressure in low birth weight, nonobese, young south african adults: Early programming of cortisol axis (2000) J Clin Endocrinol Metab, 85, pp. 4611-4618
  • Reynolds, R.M., Walker, B.R., Syddall, H.E., Andrew, R., Wood, P.J., Whorwood, C.B., Phillips, D.I., Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors (2001) J Clin Endocrinol Metab, 86, pp. 245-250
  • Edwards, C.R., Benediktsson, R., Lindsay, R.S., Seckl, J.R., Dysfunction of placental glucocorticoid barrier: Link between fetal environment and adult hypertension? (1993) Lancet, 341, pp. 355-357
  • Chikanza, I.C., Kozaci, D.L., Corticosteroid resistance in rheumatoid arthritis: Molecular and cellular perspectives (2004) Rheumatology (Oxford), 43, pp. 1337-1345
  • Seki, M., Ushiyama, C., Seta, N., Apoptosis of lymphocytes induced by glucocorticoids and relationship to therapeutic efficacy in patients with systemic lupus erythematosus (1998) Arthritis Rheum, 41, pp. 823-830
  • Hearing, S.D., Norman, M., Probert, C.S., Haslam, N., Dayan, C.M., Predicting therapeutic outcome in severe ulcerative colitis by measuring in vitro steroid sensitivity of proliferating peripheral blood lymphocytes (1999) Gut, 45, pp. 382-388
  • Williams, G.A., Haller, J.A., Kuppermann, B.D., Dexamethasone posterior-segment drug delivery system in the treatment of macular edema resulting from uveitis or Irvine-Gass syndrome (2009) Am J Ophthalmol, 147, pp. 1048-1054. , 1054 e1-2
  • Munkholm, P., Langholz, E., Davidsen, M., Binder, V., Frequency of glucocorticoid resistance and dependency in Crohn's disease (1994) Gut, 35, pp. 360-362
  • Leung, D., Superantigens, steroid insensitivity and innate immunity in atopic eczema (2005) Acta Derm Venereol Suppl (Stockh), pp. 11-15
  • Faubion Jr., W.A., Loftus Jr., E.V., Harmsen, W.S., Zinsmeister, A.R., Sandborn, W.J., The natural history of corticosteroid therapy for inflammatory bowel disease: A population-based study (2001) Gastroenterology, 121, pp. 255-260
  • Matysiak, M., Makosa, B., Walczak, A., Selmaj, K., Patients with multiple sclerosis resisted to glucocorticoid therapy: Abnormal expression of heat-shock protein 90 in glucocorticoid receptor complex (2008) Mult Scler, 14, pp. 919-926
  • Fiorucci, E., Lucantoni, G., Paone, G., Colchicine, cyclophosphamide and prednisone in the treatment of mildmoderate idiopathic pulmonary fibrosis: Comparison of three currently available therapeutic regimens (2008) Eur Rev Med Pharmacol Sci, 12, pp. 105-111
  • de Boeck, K., de Baets, F., Malfroot, A., Desager, K., Mouchet, F., Proesmans, M., Do inhaled corticosteroids impair long-term growth in prepubertal cystic fibrosis patients? (2007) Eur J Pediatr, 166, pp. 23-28
  • Keatings, V.M., Jatakanon, A., Worsdell, Y.M., Barnes, P.J., Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD (1997) Am J Respir Crit Care Med, 155, pp. 542-548
  • Yan, Z.Q., Hansson, G.K., Innate immunity, macrophage activation, and atherosclerosis (2007) Immunol Rev, 219, pp. 187-203
  • Peter, J.V., John, P., Graham, P.L., Moran, J.L., George, I.A., Bersten, A., Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: Meta-analysis (2008) Br Med J, 336, pp. 1006-1009

Citas:

---------- APA ----------
Liberman, A.C., Castro, C.N., Noguerol, M.A., Tabarrozzi, A.E.B., Druker, J., Perone, M.J. & Arzt, E. (2010) . Molecular mechanisms of glucocorticoids action: From basic research to clinical implications. Current Immunology Reviews, 6(4), 371-380.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p371_Liberman [ ]
---------- CHICAGO ----------
Liberman, A.C., Castro, C.N., Noguerol, M.A., Tabarrozzi, A.E.B., Druker, J., Perone, M.J., et al. "Molecular mechanisms of glucocorticoids action: From basic research to clinical implications" . Current Immunology Reviews 6, no. 4 (2010) : 371-380.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p371_Liberman [ ]
---------- MLA ----------
Liberman, A.C., Castro, C.N., Noguerol, M.A., Tabarrozzi, A.E.B., Druker, J., Perone, M.J., et al. "Molecular mechanisms of glucocorticoids action: From basic research to clinical implications" . Current Immunology Reviews, vol. 6, no. 4, 2010, pp. 371-380.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p371_Liberman [ ]
---------- VANCOUVER ----------
Liberman, A.C., Castro, C.N., Noguerol, M.A., Tabarrozzi, A.E.B., Druker, J., Perone, M.J., et al. Molecular mechanisms of glucocorticoids action: From basic research to clinical implications. Curr. Immunol. Rev. 2010;6(4):371-380.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p371_Liberman [ ]