Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

The immune system has evolved as a highly effective and dynamic cellular network to signal the presence of invading pathogens and growing tumors and initiate a response that is specific for the danger signal; yet maintaining tolerance to self. In the recent years, data from genomics, proteomics and glycomics together with classical genetic approaches (knockout and transgenic experiments) and in vivo imaging technologies revealed a complexity of immune cells and molecules which is higher than anticipated. The diversity of effector and regulatory immune cells is entering a new era, in which their specialization might contribute to the development of novel therapeutic approaches in immunopathology. In this context, recent evidence has shed light to an emerging role of protein-glycan interactions in the regulation of immune cell biology. In this review we will integrate traditional and novel subsets of immune cells and will highlight the relevance of protein-glycan systems in modulating their physiology. © 2010 Bentham Science Publishers Ltd.

Registro:

Documento: Artículo
Título:Integrating the universe of effector and regulatory immune cell subsets: An emerging role of protein-glycan interactions
Autor:Pesoa, S.A.; Croci, D.O.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428, Ciudad de Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
Palabras clave:Dendritic cells; Galectins; Glycoimmunology; T helper cells; cytokine; galectin; glycan; growth factor; article; dendritic cell; effector cell; immunological tolerance; immunomodulation; immunoregulation; inflammation; nonhuman; priority journal; protein protein interaction; regulatory T lymphocyte
Año:2010
Volumen:6
Número:4
Página de inicio:348
Página de fin:356
Título revista:Current Immunology Reviews
Título revista abreviado:Curr. Immunol. Rev.
ISSN:15733955
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p348_Pesoa

Referencias:

  • Banchereau, J., Steinman, R.M., Dendritic cells and the control of immunity (1998) Nature, 392 (6673), pp. 245-252
  • van Kooyk, Y., Rabinovich, G.A., Protein-glycan interactions in the control of innate and adaptive immune responses (2008) Nat Immunol, 9 (6), pp. 593-601
  • Garcia-Vallejo, J.J., van Kooyk, Y., Endogenous ligands for C-type lectin receptors: The true regulators of immune homeostasis (2009) Immunol Rev, 230 (1), pp. 22-37
  • Pfeifer, J.D., Wick, M.J., Roberts, R.L., Findlay, K., Normark, S.J., Harding, C.V., Phagocytic processing of bacterial antigens for class I MHC presentation to T cells (1993) Nature, 361 (6410), pp. 359-362
  • Grakoui, A., Bromley, S.K., Sumen, C., The immunological synapse: A molecular machine controlling T cell activation (1999) Science, 285 (5425), pp. 221-227
  • Brikos, C., O'Neill, L.A., Signalling of toll-like receptors (2008) Handb Exp Pharmacol, pp. 21-50
  • Gallucci, S., Matzinger, P., Danger signals: SOS to the immune system (2001) Curr Opin Immunol, 13 (1), pp. 114-119
  • Steinman, R.M., Hawiger, D., Nussenzweig, M.C., Tolerogenic dendritic cells (2003) Annu Rev Immunol, 21, pp. 685-711
  • Steinman, R.M., Turley, S., Mellman, I., Inaba, K., The induction of tolerance by dendritic cells that have captured apoptotic cells (2000) J Exp Med, 191 (3), pp. 411-416
  • Lutz, M.B., Schuler, G., Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity? (2002) Trends Immunol, 23 (9), pp. 445-449
  • Quaratino, S., Duddy, L.P., Londei, M., Fully competent dendritic cells as inducers of T cell anergy in autoimmunity (2000) Proc Natl Acad Sci USA, 97 (20), pp. 911-916
  • Yamazaki, S., Iyoda, T., Tarbell, K., Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells (2003) J Exp Med, 198 (2), pp. 235-247
  • Smitsa, H.H., de Jonga, E.C., Wierengaa, E.A., Kapsenberg, M.L., Different faces of regulatory DCs in homeostasis and immunity (2005) Trends Immunol, 26 (3), pp. 23-29
  • Mahnke, K., Knop, J., Enk, A.H., Induction of tolerogenic DCs: 'you are what you eat' (2003) Trends Immunol, 24 (12), pp. 646-651
  • Rutella, S., Danese, S., Leone, G., Tolerogenic dendritic cells: Cytokine modulation comes of age (2006) Blood, 108 (5), pp. 1435-1440
  • Awasthi, A., Carrier, Y., Peron, J.P., A dominant function for interleukin 27 in generating interleukin 10-producing antiinflammatory T cells (2007) Nat Immunol, 8 (12), pp. 1380-1389
  • Stumhofer, J.S., Silver, J.S., Laurence, A., Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10 (2007) Nat Immunol, 8 (12), pp. 1363-1371
  • Fitzgerald, D.C., Zhang, G.X., El-Behi, M., Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells (2007) Nat Immunol, 8 (12), pp. 1372-1379
  • Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: Galectinglycan interactions in immune tolerance and inflammation (2009) Nat Rev Immunol, 9 (5), pp. 338-352
  • Yang, R.Y., Rabinovich, G.A., Liu, F.T., Galectins: Structure, function and therapeutic potential (2008) Expert Rev Mol Med, 10, pp. e17
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10 (9), pp. 981-991
  • Perone, M.J., Larregina, A.T., Shufesky, W.J., Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naive and activated T cells (2006) J Immunol, 176 (12), pp. 7207-7220
  • Chang, M.H., Fulcher, J.A., Wang, S., Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling (2009) J Biol Chem, 284 (39), pp. 26860-26870
  • Anderson, A.C., Anderson, D.E., Bregoli, L., Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells (2007) Science, 318 (5853), pp. 1141-1143
  • Hsu, D.K., Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells (2009) J Invest Dermatol, 129 (3), pp. 573-583
  • Morelli, A.E., Thomson, A.W., Tolerogenic dendritic cells and the quest for transplant tolerance (2007) Nat Rev Immunol, 7 (8), pp. 610-621
  • Rabinovich, G.A., Gabrilovich, D., Sotomayor, E.M., Immunosuppressive strategies that are mediated by tumor cells (2007) Annu Rev Immunol, 25, pp. 267-296
  • Coffman, R.L., Origins of the T(H)1-T(H)2 model: A personal perspective (2006) Nat Immunol, 7 (6), pp. 539-541
  • Steinman, L., A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage (2007) Nat Med, 13 (2), pp. 139-145
  • Bettelli, E., Oukka, M., Kuchroo, V.K., T(H)-17 cells in the circle of immunity and autoimmunity (2007) Nat Immunol, 8 (4), pp. 345-350
  • Yssel, H., Pène, J., Interleukin-22-producing T cells: A specialized population involved in skin inflammation? (2009) Immunol Cell Biol, 87, pp. 574-576
  • Fazilleau, N., Mark, L., McHeyzer-Williams, L.J., McHeyzer-Williams, M.G., Follicular helper T cells: Lineage and location (2009) Immunity, 30 (3), pp. 324-335
  • Tato, C.M., Cua, D.J., Alternative lifestyles of T cells (2008) Nat Immunol, 9 (12), pp. 1323-1325
  • Glimcher, L.H., Murphy, K.M., Lineage commitment in the immune system: The T helper lymphocyte grows up (2000) Genes Dev, 14 (14), pp. 1693-1711
  • Weaver, C.T., Harrington, L.E., Mangan, P.R., Gavrieli, M., Murphy, K.M., Th17: An effector CD4 T cell lineage with regulatory T cell ties (2006) Immunity, 24 (6), pp. 677-688
  • Infante-Duarte, C., Horton, H.F., Byrne, M.C., Kamradt, T., Microbial lipopeptides induce the production of IL-17 in Th cells (2000) J Immunol, 165 (11), pp. 6107-6115
  • Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J., Gurney, A.L., Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17 (2003) J Biol Chem, 278 (3), pp. 1910-1914
  • Oppmann, B., Lesley, R., Blom, B., Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12 (2000) Immunity, 13 (5), pp. 715-725
  • Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain (2003) Nature, 421 (6924), pp. 44-48
  • Murphy, C.A., Langrish, C.L., Chen, Y., Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation (2003) J Exp Med, 198 (12), pp. 1951-1957
  • Yen, D., Cheung, J., Scheerens, H., IL-23 is essential for T cellmediated colitis and promotes inflammation via IL-17 and IL-6 (2006) J Clin Invest, 116 (5), pp. 1310-1316
  • Langrish, C.L., Chen, Y., Blumenschein, W.M., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation (2005) J Exp Med, 201 (2), pp. 233-240
  • Khader, S.A., Pearl, J.E., Sakamoto, K., IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available (2005) J Immunol, 175 (2), pp. 788-795
  • Lieberman, L.A., Cardillo, F., Owyang, A.M., IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12 (2004) J Immunol, 173 (3), pp. 1887-1893
  • Harrington, L.E., Hatton, R.D., Mangan, P.R., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages (2005) Nat Immunol, 6 (11), pp. 1123-1132
  • Park, H., Li, Z., Yang, X.O., Chang, S.H., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17 (2005) Nat Immunol, 6 (11), pp. 1133-1141
  • Ivanov, I.I., McKenzie, B.S., Zhou, L., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells (2006) Cell, 126 (6), pp. 1121-1133
  • Acosta-Rodriguez, E.V., Napolitani, G., Lanzavecchia, A., Sallusto, F., Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells (2007) Nat Immunol, 8 (9), pp. 942-949
  • Annunziato, F., Cosmi, L., Santarlasci, V., Phenotypic and functional features of human Th17 cells (2007) J Exp Med, 204 (8), pp. 1849-1861
  • Chen, Z., Laurence, A., O'Shea, J.J., Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation (2007) Semin Immunol, 19 (6), pp. 400-408
  • Kolls, J.K., Linden, A., Interleukin-17 family members and inflammation (2004) Immunity, 21 (4), pp. 467-476
  • Weaver, C.T., Hatton, R.D., Mangan, P.R., Harrington, L.E., IL-17 family cytokines and the expanding diversity of effector T cell lineages (2007) Annu Rev Immunol, 25, pp. 821-852
  • Wilson, N.J., Boniface, K., Chan, J.R., Development, cytokine profile and function of human interleukin 17-producing helper T cells (2007) Nat Immunol, 8 (9), pp. 950-957
  • Wolk, K., Sabat, R., Interleukin-22: A novel T-and NK-cell derived cytokine that regulates the biology of tissue cells (2006) Cytokine Growth Factor Rev, 17 (5), pp. 367-380
  • Trifari, S., Kaplan, C.D., Tran, E.H., Crellin, N.K., Spits, H., Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells (2009) Nat Immunol, 10 (8), pp. 864-871
  • Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A., Sallusto, F., Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells (2009) Nat Immunol, 10 (8), pp. 857-863
  • Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A., Stockinger, B., Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells (2009) J Exp Med, 206 (1), pp. 43-49
  • Quintana, F.J., Basso, A.S., Iglesias, A.H., Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor (2008) Nature, 453 (7191), pp. 65-71
  • Kagami, S., Saeki, H., Tsunemi, Y., CCL27-transgenic mice show enhanced contact hypersensitivity to TH2, but not Th1 stimuli (2008) Eur J Immunol, 38 (3), pp. 647-657
  • Homey, B., Alenius, H., Müller, A., CCL27-CCR10 interactions regulate T cell-mediated skin inflammation (2002) Nat Med, 8 (2), pp. 157-165
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat Immunol, 8 (8), pp. 825-834
  • Motran, C.C., Molinder, K.M., Liu, S.D., Poirier, F., Miceli, M.C., Galectin-1 functions as a TH2 cytokine that selectively induces Th1 apoptosis and promotes TH2 function (2008) Eur J Immunol, 38 (11), pp. 3015-3027
  • Anderson, A.C., Anderson, D., TIM-3 in autoimmunity (2006) Curr Opin Immunol, 18 (6), pp. 665-669
  • Hokama, A., Mizoguchi, E., Sugimoto, K., Induced reactivity of intestinal CD4+ T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation (2004) Immunity, 20 (6), pp. 681-693
  • Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M., Regulatory T cells and immune tolerance (2008) Cell, 133 (5), pp. 775-787
  • Shevach, E.M., From vanilla to 28 flavors: Multiple varieties of T regulatory cells (2006) Immunity, 25 (2), pp. 195-201
  • Groux, H., O'Garra, A., Bigler, M., A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis (1997) Nature, 389 (6652), pp. 737-742
  • Batten, M., Li, J., Yi, S., Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells (2006) Nat Immunol, 7 (9), pp. 929-936
  • Stumhofer, J.S., Laurence, A., Wilson, E.H., Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system (2006) Nat Immunol, 7 (9), pp. 937-945
  • Faria, A.M., Weiner, H.L., Oral tolerance and TGF-beta-producing cells (2006) Inflamm Allergy Drug Targets, 5 (3), pp. 179-190
  • Bettelli, E., Carrier, Y., Gao, W., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells (2006) Nature, 441 (7090), pp. 235-238
  • Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., Stockinger, B., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells (2006) Immunity, 24 (2), pp. 179-189
  • Veldhoen, M., Uyttenhove, C., van Snick, J., Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset (2008) Nat Immunol, 9 (12), pp. 1341-1346
  • Dardalhon, V., Awasthi, A., Kwon, H., IL-4 inhibits TGF-betainduced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells (2008) Nat Immunol, 9 (12), pp. 1347-1355
  • Seki, M., Oomizu, S., Sakata, K.M., Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis (2008) Clin Immunol, 127 (1), pp. 78-88
  • Juszczynski, P., Ouyang, J., Monti, S., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc Natl Acad Sci USA, 104 (32), pp. 13134-13139
  • Toscano, M.A., Commodaro, A.G., Ilarregui, J.M., Galectin-1 suppresses autoimmune retinal disease by promoting concomitant TH2-and T regulatory-mediated anti-inflammatory responses (2006) J Immunol, 176 (10), pp. 6323-6332
  • Blois, S.M., Ilarregui, J.M., Tometten, M., A pivotal role for galectin-1 in fetomaternal tolerance (2007) Nat Med, 13 (12), pp. 1450-1457
  • Kubach, J., Lutter, P., Bopp, T., Human CD4+ CD25+ regulatory T cells: Proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function (2007) Blood, 110 (5), pp. 1550-1558
  • Garín, M.I., Chu, C.C., Golshayan, D., Galectin-1: A key effector of regulation mediated by CD4+ CD25+ T cells (2007) Blood, 109 (5), pp. 2058-2065
  • Wang, J., Lu, Z.H., Gabius, H.J., Rohowsky-Kochan, C., Ledeen, R.W., Wu, G., Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: Possible role in suppressing experimental autoimmune encephalomyelitis (2009) J Immunol, 182 (7), pp. 4036-4045
  • King, C., Tangye, S.G., Mackay, C.R., T follicular helper (TFH) cells in normal and dysregulated immune responses (2008) Annu Rev Immunol, 26, pp. 741-766
  • Rabinovich, G.A., Ilarregui, J.M., Conveying glycan information into T-cell homeostatic programs: A challenging role for galectin-1 in inflammatory and tumor microenvironments (2009) Immunol Rev, 230 (1), pp. 144-159

Citas:

---------- APA ----------
Pesoa, S.A., Croci, D.O. & Rabinovich, G.A. (2010) . Integrating the universe of effector and regulatory immune cell subsets: An emerging role of protein-glycan interactions. Current Immunology Reviews, 6(4), 348-356.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p348_Pesoa [ ]
---------- CHICAGO ----------
Pesoa, S.A., Croci, D.O., Rabinovich, G.A. "Integrating the universe of effector and regulatory immune cell subsets: An emerging role of protein-glycan interactions" . Current Immunology Reviews 6, no. 4 (2010) : 348-356.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p348_Pesoa [ ]
---------- MLA ----------
Pesoa, S.A., Croci, D.O., Rabinovich, G.A. "Integrating the universe of effector and regulatory immune cell subsets: An emerging role of protein-glycan interactions" . Current Immunology Reviews, vol. 6, no. 4, 2010, pp. 348-356.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p348_Pesoa [ ]
---------- VANCOUVER ----------
Pesoa, S.A., Croci, D.O., Rabinovich, G.A. Integrating the universe of effector and regulatory immune cell subsets: An emerging role of protein-glycan interactions. Curr. Immunol. Rev. 2010;6(4):348-356.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15733955_v6_n4_p348_Pesoa [ ]