Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanoparticle catalysts comprising two PtSn alloys with different Pt:Sn atomic ratios and a Sn modified Pt catalyst were prepared in order to study the effect of the particle nanostructures on the activity towards the ethanol electrooxidation and the selectivity to CO2. An accurate model of the electronic and structural properties, obtained by ex situ analysis, was established. Alloying of Sn with Pt causes the expansion of the lattice parameter of Pt and modifies its electronic structure. In contrast, the deposition of Sn on the Pt surface has neither effect. The activity of the catalysts towards ethanol oxidation was established voltammetrically and the CO2 selectivity via in situ Fourier transform infrared spectroscopy (FTIRS). Results indicated that the modification of the electronic environment of Pt in Pt-Sn alloys results in a weaker adsorption of the intermediates (acetaldehyde and acetic acid), which desorb easily from the surface of the catalyst resulting in incomplete oxidation to CO2. In contrast, when the electronic structure is not perturbed (Sn modified Pt sample), the amount of CO2 produced increases. The stability of the different nanostructures under working conditions was investigated by in situ X-ray absorption spectroscopy (XAS) measurements, which show that initially both the Sn modified Pt and Pt-Sn alloy nanostructures are stable under applied potential in the potential window studied and in presence of ethanol. Accelerated aging studies showed that the Sn modified Pt nanostructure remained stable, whereas a significant structural change was observed for the Pt-Sn alloys. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts
Autor:Calvillo, L.; Mendez De Leo, L.; Thompson, S.J.; Price, S.W.T.; Calvo, E.J.; Russell, A.E.
Filiación:Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, Padova, 35131, Italy
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
Palabras clave:Ethanol electrooxidation; In situ FTIRS; In situ XAFS; Pt-Sn nanostructures; Structural stability; Binary alloys; Carbon dioxide; Catalyst activity; Catalyst selectivity; Catalysts; Electronic structure; Electrooxidation; Ethanol; Fourier transform infrared spectroscopy; Nanostructures; Oxidation; Platinum; Reaction intermediates; Stability; Thallium alloys; Tin; Tin alloys; Tin compounds; X ray absorption spectroscopy; Electronic and structural properties; Electronic environments; Ethanol electro-oxidation; In-situ X-ray absorption spectroscopy; Nanoparticle catalysts; Situ XAFS; Sn nanostructures; Structural stabilities; Platinum alloys
Año:2018
Volumen:819
Página de inicio:136
Página de fin:144
DOI: http://dx.doi.org/10.1016/j.jelechem.2017.09.060
Título revista:Journal of Electroanalytical Chemistry
ISSN:15726657
CODEN:JECHE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15726657_v819_n_p136_Calvillo

Referencias:

  • Lamy, C., Lima, A., LeRhun, V., Delime, F., Coutanceau, C., Léger, J.-M., Recent advances in the development of direct alcohol fuel cells (DAFC) (2002) J. Power Sources, 105, pp. 283-296
  • Spendelow, J.S., Wieckowski, A., Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media (2007) Phys. Chem. Chem. Phys., 9, pp. 2654-2675
  • Igarashi, H., Fujino, T., Zhu, Y., Uchida, H., Watanabe, M., CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism (2001) Phys. Chem. Chem. Phys., 3, pp. 306-314
  • Colmenares, L., Wang, H., Jusys, Z., Jiang, L., Yan, S., Sun, G.Q., Behm, R.J., Ethanol oxidation on novel, carbon supported Pt alloy catalysts-model studies under defined diffusion conditions (2006) Electrochim. Acta, 52, pp. 221-233
  • Herrera-Méndez, H.D., Roquero, P., Smit, M.A., Ordóñez, L.C., Carbon-supported platinum molybdenum electro-catalysts and their electro-activity toward ethanol oxidation (2011) Int. J. Electrochem. Sci., 6, pp. 4454-4469
  • Yang, G., Frenkel, A.I., Su, D., Teng, X., Enhanced electrokinetics of C–C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell (2016) ChemCatChem, 8, pp. 1-6
  • Jin, J.-M., Sheng, T., Lin, X., Kavanagh, R., Hamer, P., Hu, P., Hardacre, C., Lin, W.-F., The origin of high activity but low CO2 selectivity on binary PtSn in the direct ethanol fuel cell (2014) Phys. Chem. Chem. Phys., 16, pp. 9432-9440
  • Kowal, A., Li, M., Shao, M., Sasaki, K., Vukmirovic, M.B., Zhang, J., Marinkovic, N.S., Adzic, R.R., Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2 (2009) Nat. Mater., 8, pp. 325-330
  • Hayden, B.E., Rendall, M.E., South, O., The stability and electro-oxidation of carbon monoxide on model electrocatalysts: Pt(111)–Sn(2 × 2) and Pt(1 1 1)–Sn(√ 3 × √ 3)R30° (2005) J. Mol. Catal. A Chem., 228, pp. 55-65
  • Crabb, E.M., Marshall, R., Thompsett, D., Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry (2000) J. Electrochem. Soc., 147, pp. 4440-4447
  • García-Rodríguez, S., Somodi, F., Borbáth, I., Margitfalvi, J.L., Peña, M.A., Fierro, J.L.G., Rojas, S., Controlled synthesis of Pt-Sn/C fuel cell catalysts with exclusive Sn-Pt interaction. Application in CO and ethanol electrooxidation reactions (2009) Appl. Catal. B Environ., 91, pp. 83-91
  • Lopez-Suarez, F.E., Carvalho-Filho, C.T., Bueno-Lopez, A., Arboleda, J., Echavarrıa, A., Eguiluz, K.I.B., Salazar-Banda, G.R., Platinum–tin/carbon catalysts for ethanol oxidation: influence of Sn content on the electroactivity and structural characteristics (2015) Int. J. Hydrog. Energy, 40, pp. 12674-12686
  • Du, W., Yang, G., Wong, E., Deskings, N.A., Frenkel, A.I., Su, D., Teng, X., Platinum-tin oxide core–shell catalysts for efficient electro-oxidation of ethanol (2014) J. Am. Chem. Soc., 136, pp. 10862-10865
  • Alayoglu, S., Nilekar, A.U., Mavrikakis, M., Eichhorn, B., Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen (2008) Nat. Mater., 7, pp. 333-338
  • Alayoglu, S., Eichhorn, B., Rh–Pt bimetallic catalysts: synthesis, characterization, and catalysis of core–shell, alloy, and monometallic nanoparticles (2008) J. Am. Chem. Soc., 130, pp. 17479-17486
  • Parsons, R., VanderNoot, T., The oxidation of small organic molecules: a survey of recent fuel cell related research (1988) J. Electroanal. Chem., 257, pp. 9-45
  • Fievet, F., Lagier, J.P., Blin, B., Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles (1989) Solid State lonics, 32-33, pp. 198-205
  • Zhou, J.-H., He, J.-P., Ji, Y.-J., Dang, W.-J., Liu, X.-L., Zhao, G.-W., Zhang, C.-X., Hu, H.-P., CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation (2007) Electrochim. Acta, 52, pp. 4691-4695
  • Boxall, D.L., Lukehart, C.M., Rapid synthesis of Pt or Pd/Carbon nanocomposites using microwave irradiation (2001) Chem. Mater., 13, pp. 806-810
  • Li, W., Zhou, W., Li, H., Zhou, Z., Zhou, B., Sun, G., Xin, Q., Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell (2004) Electrochim. Acta, 49, pp. 1045-1055
  • Kim, S., Park, S.-J., Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters (2007) Electrochim. Acta, 52, pp. 3013-3021
  • Wise, A.M., Richardson, P.W., Price, S.W.T., Chouchelamane, G., Calvillo, L., Hendra, P.J., Toney, M.F., Russell, A.E., Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: an in situ EXAFS and XRD study, Electrochim. Acta, (under revision); Ravel, B., Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT (2005) J. Synchrotron Radiat., 12, pp. 537-541
  • Newville, M., EXAFS analysis using FEFF and FEFFIT (2001) J. Synchrotron Radiat., 8, pp. 96-100
  • Zhou, W., Liu, L., Li, B., Wu, P., Song, Q., Structural, elastic and electronic properties of intermetallics in the Pt–Sn system: a density functional investigation (2009) Comput. Mater. Sci., 46, pp. 921-931
  • Wang, X., Altmann, L., Stöver, J., Zielasek, V., Bäumer, M., Al-Shamery, K., Borchert, H., Kolny-Olesiak, J., Pt/Sn intermetallic, core/shell and alloy nanoparticles: colloidal synthesis and structural control (2013) Chem. Mater., 25, pp. 1400-1407
  • Zamlynny, V., Lipkowski, J., In Advances in Electrochemical Science and Engineering (2006), 9. , WILEY Weinheim; Zamlynny, V., Zawisza, I., Lipkowski, J., PM FTIRRAS studies of potential-controlled transformations of a monolayer and a bilayer of 4-pentadecylpyridine, a model surfactant, adsorbed on a Au(111) electrode surface (2003) Langmuir, 19, pp. 132-145
  • Kim, J.H., Choi, S.M., Nam, S.H., Seo, M.H., Choi, S.H., Kim, W.B., Influence of Sn content on PtSn/C catalysts for electrooxidation of C1–C3 alcohols: synthesis, characterization, and electrocatalytic activity (2008) Appl. Catal. B Environ., 82, pp. 89-102
  • Sieben, J.M., Duarte, M.M.E., Nanostructured Pt and Pt–Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation (2001) Int. J. Hydrog. Energy, 36, pp. 3313-3321
  • Li, G., Pickup, P.G., Decoration of carbon-supported Pt catalysts with Sn to promote electro-oxidation of ethanol (2007) J. Power Sources, 173, pp. 121-129
  • Mukerjee, S., Mcbreen, J., An in situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts: part I (1999) J. Electrochem. Soc., 146, pp. 600-606
  • Zignani, S.C., Gonzalez, E.R., Baglio, V., Siracusano, S., Aricò, A.S., Investigation of a Pt3Sn/C electro-catalyst in a direct ethanol fuel cell operating at low temperatures for portable applications (2012) Int. J. Electrochem. Sci., 7, pp. 3155-3166
  • Almeida, T.S., Kokoh, K.B., De Andrade, A.R., Effect of Ni on Pt/C and PtSn/C prepared by the Pechini method (2011) Int. J. Hydrog. Energy, 36, pp. 3803-3810
  • Ayoub, J.M.S., De Souza, R.F.B., Silva, J.C.M., Piasentin, R.M., Spinacé, E.V., Santos, M.C., Neto, A.O., Ethanol electro-oxidation on PtSn/C-ATO electrocatalysts (2012) Int. J. Electrochem. Sci., 7, pp. 11351-11362
  • Del Colle, V., Souza-Garcia, J., Tremiliosi-Filho, G., Herrero, E., Feliu, J.M., Electrochemical and spectroscopic studies of ethanoloxidation on Pt stepped surfaces modified by tin adatoms (2011) Phys. Chem. Chem. Phys., 13, pp. 12163-12172
  • Simoes, F.C., dos Anjos, D.M., Vigier, F., Léger, J.-M., Hahn, F., Coutanceau, C., Gonzalez, E.R., Kokoh, K.B., Electroactivity of tin modified platinum electrodes for ethanol electrooxidation (2007) J. Power Sources, 167, pp. 1-10
  • De Souza, R.F.B., Parreira, L.S., Silva, J.C.M., Simoes, F.C., Calegaro, M.L., Giz, M.J., Camara, C.A., Santos, M.C., PtSnCe/C electrocatalysts for ethanol oxidation: DEFC and FTIR “in-situ” studies (2011) Int. J. Hydrog. Energy, 36, pp. 11519-11527
  • Shao, M.H., Adzic, R.R., Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study (2005) Electrochim. Acta, 50, pp. 2415-2422
  • Zhou, W.J., Song, S.Q., Li, W.Z., Zhou, Z.H., Sun, G.Q., Xina, Q., Douvartzides, S., Tsiakaras, P., Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance (2008) J. Power Sources, 140, pp. 50-58

Citas:

---------- APA ----------
Calvillo, L., Mendez De Leo, L., Thompson, S.J., Price, S.W.T., Calvo, E.J. & Russell, A.E. (2018) . In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts. Journal of Electroanalytical Chemistry, 819, 136-144.
http://dx.doi.org/10.1016/j.jelechem.2017.09.060
---------- CHICAGO ----------
Calvillo, L., Mendez De Leo, L., Thompson, S.J., Price, S.W.T., Calvo, E.J., Russell, A.E. "In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts" . Journal of Electroanalytical Chemistry 819 (2018) : 136-144.
http://dx.doi.org/10.1016/j.jelechem.2017.09.060
---------- MLA ----------
Calvillo, L., Mendez De Leo, L., Thompson, S.J., Price, S.W.T., Calvo, E.J., Russell, A.E. "In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts" . Journal of Electroanalytical Chemistry, vol. 819, 2018, pp. 136-144.
http://dx.doi.org/10.1016/j.jelechem.2017.09.060
---------- VANCOUVER ----------
Calvillo, L., Mendez De Leo, L., Thompson, S.J., Price, S.W.T., Calvo, E.J., Russell, A.E. In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts. 2018;819:136-144.
http://dx.doi.org/10.1016/j.jelechem.2017.09.060