Artículo

Khoa Ly, H.; Wisitruangsakul, N.; Sezer, M.; Feng, J.-J.; Kranich, A.; Weidinger, I.M.; Zebger, I.; Murgida, D.H.; Hildebrandt, P. "Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c" (2011) Journal of Electroanalytical Chemistry. 660(2):367-376
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Time-resolved surface enhanced resonance Raman and surface enhanced infrared absorption spectroscopy have been employed to study the interfacial redox process of cytochrome c (Cyt-c) immobilised on various metal electrodes coated with self-assembled monolayers (SAMs) of carboxyl-terminated mercaptanes. The experiments, carried out with Ag, Au and layered Au-SAM-Ag electrodes, afford apparent heterogeneous electron transfer constants (krelax) that reflect the interplay between electron tunnelling, redox-linked protein structural changes, protein re-orientation, and hydrogen bond re-arrangements in the protein and in the protein/SAM interface. It is shown that the individual processes are affected by the interfacial electric field strength that increases with decreasing thickness of the SAM and increasing difference between the actual potential and the potential of zero-charge. At thick SAMs of mercaptanes including 15 methylene groups, electron tunnelling (kET) is the rate-limiting step. Pronounced differences for kET and its overpotential-dependence are observed for the three metal electrodes and can be attributed to the different electric-field effects on the free-energy term controlling the tunnelling rate. With decreasing SAM thickness, electron tunnelling increases whereas protein dynamics is slowed down such that for SAMs including less than 10 methylene groups, protein re-orientation becomes rate-limiting, as reflected by the viscosity dependence of krelax. Upon decreasing the SAM thickness from 5 to 1 methylene group, an additional H/D kinetic isotope effect is detected indicating that at very high electric fields re-arrangements of the interfacial or intra-protein hydrogen bond networks limit the rate of the overall redox process. © 2010 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c
Autor:Khoa Ly, H.; Wisitruangsakul, N.; Sezer, M.; Feng, J.-J.; Kranich, A.; Weidinger, I.M.; Zebger, I.; Murgida, D.H.; Hildebrandt, P.
Filiación:Technische Universität Berlin, Institut für Chemie, Straße des 17. Juni 135, D-10623 Berlin, Germany
Iron and Steel Institute of Thailand, Bureau of Industrial Sectors Development Building, Trimitr Soi., Pharam 4 Rd. Phakhanong, Klongtoey Bangkok 10110, Thailand
School of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007, China
Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Ciudad Universitaria, Pab. 2, Piso. 1, C1428EHA-Buenos Aires, Argentina
Palabras clave:Cytochrome c; Electric field; Electron transfer; Surface enhanced infrared spectroscopy; Surface enhanced Raman spectroscopy; Dynamics; Electric fields; Electrodes; Electron transitions; Electron tunneling; Gold; Hydrogen bonds; Infrared spectroscopy; Isotopes; Proteins; Raman spectroscopy; Self assembled monolayers; Cytochrome C; Electric field strength; Electron transfer; Heterogeneous electron transfer; High electric fields; Hydrogen bond networks; Interfacial electron transfer; Kinetic isotope effects; Metal electrodes; Methylene groups; Protein dynamics; Rate limiting; Rate-limiting steps; Re-orientation; Redox process; Sams; Structural change; Surface enhanced infrared absorption spectroscopy; Surface enhanced infrared spectroscopy; Surface enhanced Raman spectroscopy; Surface enhanced resonance; Time-resolved; Zero charge; Electric field effects
Año:2011
Volumen:660
Número:2
Página de inicio:367
Página de fin:376
DOI: http://dx.doi.org/10.1016/j.jelechem.2010.12.020
Título revista:Journal of Electroanalytical Chemistry
Título revista abreviado:J Electroanal Chem
ISSN:15726657
CODEN:JECHE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15726657_v660_n2_p367_KhoaLy

Referencias:

  • Bockris, J.O.M., Reddy, A.K.N., Gamboa-Aldeco, M., (2000) Modern Electrochemistry, 2. , Kluwer Academic, New York
  • Bockris, J.O.M., Reddy, A.K.N., (2000) Modern Electrochemistry, 2. , Kluwer Academic New York
  • Kuznetsov, A.M., Ulstrup, J., (1998) Electron Transfer in Chemistry and Biology An Introduction to the Theory, , Wiley-VCH, Weinheim
  • Hammerich, O., Ulstrup, J., (2008) Bioinorganic Electrochemistry, , Springer New York
  • Bard, A.J., Faulkner, L.R., (2000) Electrochemical Methods: Fundamentals and Applications, , Dekker New York
  • Armstrong, F.A., (2005) Curr. Opin. Chem. Biol., 9, p. 110
  • Kneipp, K., Moskovits, M., Kneipp, H., (2006) Surface-enhanced Raman Scattering: Physics and Applications, , Springer Berlin
  • Siebert, F., Hildebrandt, P., (2007) Vibrational Spectroscopy in Life Science, , Wiley-VCH Weinheim
  • Lecomte, S., Wackerbarth, H., Soulimane, T., Buse, G., Hildebrandt, P., (1998) J. Am. Chem. Soc., 120, p. 7381
  • Wackerbarth, H., Klar, U., Günther, W., Hildebrandt, P., (1999) Appl. Spectrosc., 53, p. 283
  • Murgida, D.H., Hildebrandt, P., (2001) Angew. Chem. Int. Ed., 40, p. 728
  • Murgida, D.H., Hildebrandt, P., (2001) J. Am. Chem. Soc., 123, p. 4062
  • Wisitruangsakul, N., Zebger, I., Ly, K.H., Murgida, D.H., Egkasit, S., Hildebrandt, P., (2008) Phys. Chem. Chem. Phys., 10, p. 5276
  • Murgida, D.H., Hildebrandt, P., (2008) Chem. Soc. Rev., 37, p. 937
  • Murgida, D.H., Hildebrandt, P., (2005) Phys. Chem. Chem. Phys., 7, p. 3773
  • Ataka, K., Heberle, J., (2004) J. Am. Chem. Soc., 126, p. 9445
  • Ataka, K., Heberle, J., (2007) Anal. Bioanal. Chem., 388, p. 47
  • Nuzzo, R.G., Allara, D.L., (1983) J. Am. Chem. Soc., 105, p. 4481
  • Prime, L.K., Whitesides, G.M., (1991) Science, 252, p. 1164
  • Tarlov, M.J., Bowden, E.F., (1991) J. Am. Chem. Soc., 113, p. 1847
  • Song, S., Clark, R.A., Bowden, E.F., Tarlov, M.J., (1997) J. Phys. Chem., 97, p. 6564
  • Nahir, T.M., Clark, R.A., Bowden, E.F., (1994) Anal. Chem., 66, p. 2595
  • Feng, Z.Q., Imabayashi, S., Kakiuchi, T., Niki, K., (1997) J. Chem. Soc. Faraday Trans., 93, p. 1367
  • El Kasmi, A., Wallace, J.M., Bowden, E.F., Binet, S.M., Linderman, R.J., (1998) J. Am. Chem. Soc., 120, p. 225
  • Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., (2000) J. Phys. Chem. B, 104, p. 2759
  • Murgida, D.H., Hildebrandt, P., (2001) J. Phys. Chem. B, 105, p. 1578
  • Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, p. 12814
  • Nordgren, C.E., Tobias, D.J., Klein, M.L., Blasie, J.K., (2002) Biophys. J., 83, p. 2906
  • Niki, K., Hardy, W.R., Hill, M.G., Li, H., Sprinkle, J.R., Margoliash, E., Fujita, K., Gray, H.B., (2003) J. Phys. Chem. B, 107, p. 9947
  • Khoshtariya, D.E., Wei, J.J., Liu, H.Y., Yue, H.J., Waldeck, D.H., (2003) J. Am. Chem. Soc., 125, p. 7704
  • Murgida, D.H., Hildebrandt, P., Wei, J., He, Y.F., Liu, H.Y., Waldeck, D.H., (2004) J. Phys. Chem. B, 108, p. 2261
  • Wei, J.J., Liu, H.Y., Niki, K., Margoliash, E., Waldeck, D.H., (2004) J. Phys. Chem. B, 108, p. 16912
  • Petrovic, J., Clark, R.A., Yue, H.J., Waldeck, D.H., Bowden, E.F., (2005) Langmuir, 21, p. 6308
  • Yue, H.J., Waldeck, D.H., (2005) Curr. Opin. Solid State Mater. Sci., 9, p. 28
  • Xu, J.S., Bowden, E.F., (2006) J. Am. Chem. Soc., 128, p. 6813
  • Yue, H.J., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., (2006) J. Phys. Chem. B, 110, p. 19906
  • Holt, K.B., (2006) Langmuir, 22, p. 4298
  • De Groot, M.T., Merkx, M., Koper, M.T.M., (2007) Langmuir, 23, p. 3832
  • Jiang, X.U., Ataka, K., Heberle, J., (2008) J. Phys. Chem. C, 112, p. 813
  • Davis, K.L., Drews, B.J., Yue, H., Waldeck, D.H., Knorr, K., Clark, R.A., (2008) J. Phys. Chem. C, 112, p. 6571
  • Feng, J.J., Murgida, D.H., Utesch, T., Mroginski, M.A., Hildebrandt, P., Weidinger, I., (2008) J. Phys. Chem. B, 112, p. 15202
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., (2008) J. Am. Chem. Soc., 130, p. 9844
  • Davis, K.L., Waldeck, D.H., (2008) J. Phys. Chem. B, 112, p. 12498
  • Millo, D., Ranieri, A., Gross, P., Borsari, M., Ly, H.K., Hildebrandt, P., Wuite, G.J.L., Van Der Zwan, G., (2009) J. Phys. Chem. C, 113, p. 2861
  • Feng, J.J., Gernert, U., Sezer, M., Kuhlmann, U., Murgida, D.H., David, C., Richter, M., Weidinger, I., (2009) Nano Lett., 9, p. 298
  • Paggi, D.A., Martín, D.F., Kranich, A., Hildebrandt, P., Martí, M., Murgida, D.H., (2009) Electrochim. Acta, 54, p. 4963
  • Ly, H.K., Marti, M., Martin, D.F., Paggi, D.A., Meister, W., Kranich, A., Weidinger, I.M., Murgida, D.H., (2010) Chem. Phys. Chem., 11, p. 1225
  • Paggi, D.A., Martín, D.F., Biase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H., (2010) J. Am. Chem. Soc., 132, p. 5769
  • Georg, S., Kabuss, J., Weidinger, I.M., Murgida, D.H., Hildebrandt, P., Knorr, A., Richter, M., (2010) Phys. Rev. e, 81, p. 046101
  • Sezer, M., Feng, J.J., Ly, H.K., Shen, Y., Nakanishi, T., Kuhlmann, U., Möhwald, H., Weidinger, I., (2010) Phys. Chem. Chem. Phys., 12, p. 9822
  • Chi, J.Q., Zhang, J.D., Andersen, J.E.T., Ulstrup, J., (2001) J. Phys. Chem. B, 105, p. 4669
  • Fujita, K., Nakamura, N., Ohno, H., Leigh, B.S., Niki, K., Gray, H.B., Richards, J.H., (2004) J. Am. Chem. Soc., 126, p. 13954
  • Kranich, A., Naumann, H., Molina-Heredia, F.P., Moore, H.J., Lee, T.R., Lecomte, S., De La Rosa, M.A., Murgida, D.H., (2009) Phys. Chem. Chem. Phys., 11, p. 7390
  • Zuo, P., Albrecht, T., Barker, P.D., Murgida, D.H., Hildebrandt, P., (2009) Phys. Chem. Chem. Phys, 11, p. 7430
  • Vargo, M.L., Gulka, C.P., Gerig, J.K., Manieri, C.M., Dattelbaum, J.D., Masrks, C.B., Lawrence, N.T., Leopold, M.C., (2010) Langmuir, 26, p. 560
  • Döpner, S., Hildebrandt, P., Mauk, A.G., Lenk, H., Stempfle, W., (1996) Spectrochim. Acta A - Mol. Biomol. Spectrosc., 52, p. 573
  • Oellerich, S., Wackerbarth, H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, p. 6566
  • Wackerbarth, H., Hildebrandt, P., (2003) Chem. Phys. Chem., 4, p. 714
  • De Biase, P.M., Paggi, D.A., Doctorovich, F., Hildebrandt, P., Estrin, D.A., Murgida, D.H., Marti, M.A., (2009) J. Am. Chem. Soc., 131, p. 16248
  • Rivas, L., Murgida, D.H., Hildebrandt, P., (2002) J. Phys. Chem. B, 106, p. 4823
  • Mayne, L., Patterson, Y., Cesaroli, D., Englander, S.W., (1992) Biochemistry, 31, p. 10678
  • Döpner, S., Hildebrandt, P., Heibel, G.E., Vanhecke, F., Mauk, A.G., (1995) J. Mol. Struct., 349, p. 125
  • Kim, J.E., Pribisko, M.A., Gray, H.B., Winkler, J.R., (2004) Inorg. Chem., 43, p. 7953
  • Marcus, R.A., (1965) J. Chem. Phys., 43, p. 679
  • Chidsey, C.E.D., (1991) Science, 251, p. 919
  • Ramirez, P., Andreu, R., Cuesta, A., Calzado, C.J., Calvente, J.J., (2007) Anal. Chem., 79, p. 6473
  • Lockhart, D.J., Kirmaier, C., Holten, D., Boxer, S.G., (1990) J. Phys. Chem., 94, p. 6987
  • Lao, K., Franzen, S., Steffen, M., Lambright, D., Stanley, R., Boxer, S.G., (1995) Chem. Phys., 197, p. 259
  • Bixon, M., Jortner, J., (1989) J. Phys. Chem., 92, p. 7148
  • Seki, K., Traytak, Tachiya, M., (2003) J. Chem. Phys., 118, p. 679
  • Lin, S.H., Yeh, C.Y., Wu, G.Y.C., (1990) Chem. Phys. Lett., 166, p. 195
  • Forster, R.J., Loughman, P., Keyes, T.E., (2000) J. Am. Chem. Soc., 122, p. 11948
  • Ford, R.R., Pritchard, J., (1971) Trans. Faraday Soc., 67, p. 216
  • Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., (2005) Chem. Rev., 105, p. 1103
  • Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N., Nuzzo, R.G., (1991) J. Am. Chem. Soc., 113, p. 7152
  • Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., Nuzzo, R.G., (1989) J. Am. Chem. Soc., 111, p. 321
  • Kang, S.A., Hoke, K.R., Crane, B.R., (2006) J. Am. Chem. Soc., 128, p. 2346
  • Decornez, H., Hammes-Schiffer, S., (2000) J. Phys. Chem. A, 104, p. 9370

Citas:

---------- APA ----------
Khoa Ly, H., Wisitruangsakul, N., Sezer, M., Feng, J.-J., Kranich, A., Weidinger, I.M., Zebger, I.,..., Hildebrandt, P. (2011) . Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c. Journal of Electroanalytical Chemistry, 660(2), 367-376.
http://dx.doi.org/10.1016/j.jelechem.2010.12.020
---------- CHICAGO ----------
Khoa Ly, H., Wisitruangsakul, N., Sezer, M., Feng, J.-J., Kranich, A., Weidinger, I.M., et al. "Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c" . Journal of Electroanalytical Chemistry 660, no. 2 (2011) : 367-376.
http://dx.doi.org/10.1016/j.jelechem.2010.12.020
---------- MLA ----------
Khoa Ly, H., Wisitruangsakul, N., Sezer, M., Feng, J.-J., Kranich, A., Weidinger, I.M., et al. "Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c" . Journal of Electroanalytical Chemistry, vol. 660, no. 2, 2011, pp. 367-376.
http://dx.doi.org/10.1016/j.jelechem.2010.12.020
---------- VANCOUVER ----------
Khoa Ly, H., Wisitruangsakul, N., Sezer, M., Feng, J.-J., Kranich, A., Weidinger, I.M., et al. Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c. J Electroanal Chem. 2011;660(2):367-376.
http://dx.doi.org/10.1016/j.jelechem.2010.12.020