Artículo

Spennemann, P.C.; Salvia, M.; Ruscica, R.C.; Sörensson, A.A.; Grings, F.; Karszenbaum, H. "Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models" (2018) International Journal of Applied Earth Observation and Geoinformation. 64:96-103
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In regions of strong Land-Atmosphere (L-A) interaction, soil moisture (SM) conditions can impact the atmosphere through modulating the land surface fluxes. The importance of the identification of L-A interaction regions lies in the potential improvement of the weather/seasonal forecast and the better understanding of the physical mechanisms involved. This study aims to compare the terrestrial segment of the L-A interaction from satellite products and climate models, motivated by previous modeling studies pointing out southeastern South America (SESA) as a L-A hotspot during austral summer. In addition, the L-A interaction under dry or wet anomalous conditions over SESA is analyzed. To identify L-A hotspots the AMSRE-LPRM SM and MODIS land surface temperature products; coupled climate models and uncoupled land surface models were used. SESA highlights as a strong L-A interaction hotspot when employing different metrics, temporal scales and independent datasets, showing consistency between models and satellite estimations. Both AMSRE-LPRM bands (X and C) are consistent showing a strong L-A interaction hotspot over the Pampas ecoregion. Intensification and a larger spatial extent of the L-A interaction for dry summers was observed in both satellite products and models compared to wet summers. These results, which were derived from measured physical variables, are encouraging and promising for future studies analyzing L-A interactions. L-A interaction analysis is proposed here as a meeting point between remote sensing and climate modelling communities of Argentina, within a region with the highest agricultural and livestock production of the continent, but with an important lack of in-situ SM observations. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models
Autor:Spennemann, P.C.; Salvia, M.; Ruscica, R.C.; Sörensson, A.A.; Grings, F.; Karszenbaum, H.
Filiación:Centro de Investigaciones del Mar y la Atmósfera (CONICET/UBA), UMI-IFAECI (CONICET/CNRS/UBA), Buenos Aires, Argentina
Instituto de Astronomía y Física del Espacio (IAFE–CONICET/UBA), Buenos Aires, Argentina
Palabras clave:Climate modelling; Land surface temperature; Land-atmosphere interaction; Satellite products; Soil moisture; Southeastern South America; air-soil interaction; climate modeling; hot spot; MODIS; remote sensing; satellite data; soil moisture; surface flux; surface temperature; Argentina
Año:2018
Volumen:64
Página de inicio:96
Página de fin:103
DOI: http://dx.doi.org/10.1016/j.jag.2017.08.016
Título revista:International Journal of Applied Earth Observation and Geoinformation
Título revista abreviado:Int. J. Appl. Earth Obs. Geoinformation
ISSN:15698432
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15698432_v64_n_p96_Spennemann

Referencias:

  • Abelen, S., Seitz, F., Abarca-del-Rio, R., Güntner, A., Droughts and floods in the La Plata basin in soil moisture data and GRACE (2015) Remote Sens., 7 (6), pp. 7324-7349
  • Barret, B.W., Dwyer, E., Whelan, P., Soil moisture retrieval from active spaceborne microwave observations: an evaluation of current techniques (2009) Remote Sens., 1, pp. 210-242
  • Boulanger, J.P., Schlindwein, S., Gentile, E., CLARIS LPB WP1: metamorphosis of the CLARIS LPB European project: from a mechanistic to a systemic approach (2011) CLIVAR Exchanges, 16-57, pp. 7-10
  • Dirmeyer, P.A., The terrestrial segment of soil moisture–climate coupling (2011) Geophys. Res. Lett., 38, p. L16702
  • Dorigo, W.A., The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements (2011) Hydrol. Earth Syst. Sci., 15, pp. 1675-1698
  • Du, E., Di Vittorio, A., Collins, W., Evaluation of hydrologic components of community land model 4 and bias identification (2016) Int. J. Appl. Earth Obs. Geoinf., 48, pp. 5-16
  • Ek, M.B., Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model (2003) J. Geophys. Res., 108 (D22), p. 8851
  • Entekhabi, D., Reichle, R.H., Koster, R.D., Crow, W.T., Performance metrics for soil moisture retrievals and application requirements (2010) J. Hydrometeor, 11, pp. 832-840
  • Ferguson, C.R., Wood, E.F., Vinukollu, K., A global intercomparison of modeled and observed land–atmosphere coupling (2012) J. Hydrometeor, 13, pp. 749-784
  • Gallego-Elvira, B., Taylor, C.M., Harris, P.P., Ghent, D., Veal, K.L., Folwell, S.S., Global observational diagnosis of soil moisture control on the land surface energy balance (2016) Geophys. Res. Lett., 43, pp. 2623-2631
  • Hirschi, M., Mueller, B., Dorigo, W., Seneviratne, S.I., Using remotely sensed soil moisture for land-atmosphere coupling diagnostics: the role of surface vs. root-zone soil moisture variability (2014) Rem. Sensing. Environ., 154, pp. 246-252. , (ISSN 0034-4257)
  • Jackson, T.J., Measuring surface soil moisture using passive microwave remote sensing (1993) Hydrol. Process., 7 (2), pp. 139-152. , (John Wiley & Sons, Ltd.)
  • Jung, M., Recent decline in the global land evapotranspiration trend due to limited moisture supply (2010) Nature, 467 (7318), pp. 951-954
  • Koster, R.D., Regions of strong coupling between soil moisture and precipitation (2004) Science, 305, pp. 1138-1140
  • Lehner, B., Verdin, K., Jarvis, A., HydroSHEDS, Technical Documentation, Version 1.0 (2006), http://hydrosheds.cr.usgs.gov/webappcontent/HydroSHEDS_TechDoc_v10.pdf, (Available online at:); Martens, B., Miralles, D., Lievens, H., Fernández-Prieto, D., Verhoest, N.E.C., Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture (2016) Int. J. Appl. Earth Obs. Geoinf., 48, pp. 146-162
  • Petropoulos, G.P., Global scale estimation of land surface heat fluxes from space: current status and future trends (2013) Remote Sensing of Land Surface Turbulent Fluxes and Soil Surface Moisture Content: State of the Art, , Taylor & Francis
  • Meesters, A.C.G.A., DeJeu, R.A.M., Owe, M., Analytical derivation of the vegetation optical depth from the microwave polarization difference index (2005) IEEE Geosci. Remote Sens. Lett., 2 (2), pp. 121-123
  • Mladenova, I.E., Remote monitoring of soil moisture using passive microwave-based techniques.Theoretical basis and overview of selected algorithms for AMSR-E (2014) Remote Sens. Environ., 144, pp. 197-213. , (ISSN 0034-4257)
  • Mo, K., Berbery, E.H., Drought and persistent wet spells over south america based on observations and the U.S CLIVAR drought experiments (2011) J. Clim., 24, pp. 1801-1820
  • Mo, T., Choudhury, B.J., Schmugge, T.J., Jackson, T.J., A model for microwave emission from vegetation-covered fields (1982) J. Geophys. Res, 87 (December 20), pp. 11229-11237. , (C13)
  • Mueller, B., Seneviratne, S.I., Hot days induced by precipitation deficits at the global scale (2012) Proc. Natl. Acad. Sci. U. S. A., 109 (31), pp. 12398-12403
  • Njoku, E.G., Jackson, T.J., Lakshmi, V., Chan, T.K., Nghiem, S.V., Soil moisture retrieval from AMSR-E (2003) IEEE Trans. Geosci. Remote Sens., 41, pp. 215-229
  • Norouzi, H., Temimi, M., Rossow, W.B., Pearl, C., Azarderakhsh, M., Khanbilvardi, R., The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties (2011) Hydrol. Earth Syst. Sci., 15, pp. 3577-3589
  • Notarnicola, C., Angiulli, M., Posa, F., Use of radar and optical remotely sensed data for soil moisture retrieval on vegetated areas (2006) IEEE Trans. Geosci. Remote Sens., 44, pp. 925-935
  • Notaro, M., Statistical identification of global hot spots in soil moisture feedbacks among IPCC AR4 models (2008) J. Geophys. Res., 113. , (D09101)
  • Olson, D.M., Terrestrial ecoregions of the world: a new map of life on Earth (2001) Bioscience, 51 (11), pp. 933-938
  • Reichle, R.H., Koster, R.D., De Lannoy, G.J.M., Forman, B.A., Liu, Q., Mahanama, S.P.P., Touré, A., Assessment andenhancement of MERRA land surface hydrology estimates (2011) J. Clim., 24, pp. 6322-6338
  • Rodell, M., The global land data assimilation system (2004) Bull. Am. Meteorol. Soc., 85, pp. 381-394
  • Ruscica, R.C., Procesos de acople e interacción superficie-atmósfera en el sudeste de Sudamérica (2015) PhD Thesis. Faculty of Exact and Natural Sciences, , University of Buenos Aires
  • Ruscica, R.C., Sörensson, A.A., Menéndez, C.G., Hydrological links in Southeastern South America: soil moisture memory and coupling within a hot spot (2014) Int. J. Climatol., 34, pp. 3641-3653
  • Ruscica, R.C., Sörensson, A.A., Menéndez, C.G., Pathways between soil moisture andprecipitation in southeastern South America (2015) Atm. Sci. Lett.
  • Ruscica, R.C., Menéndez, C.G., Sörensson, A.A., Land surface–atmosphere interaction in future South American climate using a multi-model ensemble (2016) Atm. Sci Lett., 17, pp. 141-147
  • Sörensson, A.A., Menéndez, C.G., Summer soil-precipitation coupling in south america (2011) Tellus Ser A: Dyn. Meteorol. Oceanogr., 63, pp. 56-68
  • Sörensson, A.A., Análisis de retroalimentaciones suelo-atmósfera en América del Sur empleando un nuevo modelo climático regional (2010) PhD Thesis. Faculty of Exact and Natural Sciences, , University of Buenos Aires
  • Sakai, T., Varying applicability of four different satellite-derived soil moisture products to global gridded crop model evaluation (2016) Int. J. Appl. Earth Obs. Geoinf., 48, pp. 51-60
  • Samuelsson, P., Jones, C., Willéna, U., Ullerstig, A., The rossby centre regional climate model RCA3: model description and performance (2011) Tellus Ser. A-Dyn. Meteorol. Oceanogr., 63A (1), pp. 4-23
  • Sato, H., Akihiko, I., Akinori, I., Takashi, I., Etsushi, K., Current status and future of land surface models (2015) Soil Sci. Plant Nutr., 61 (1), pp. 34-47
  • Seneviratne, S., Investigating soil moisture-climate interactions in a changing climate: a review (2010) Earth Sci. Rev., 99 (3-4), pp. 125-161. , (ISSN 0012-8252)
  • Spennemann, P.C., Saulo, A.C., An estimation of the land-atmosphere coupling strength in South America using the Global Land Data assimilation system (2015) Int. J. Climatol., 35, pp. 4151-4166
  • Stensrud, Parameterization Schemes: Keys To Understanding Numerical Weather Prediction Models (2007), Cambridge University Press; Wan, Z., Dozier, J., A generalized split-window algorithm for retrieving landsurface temperature from space (1996) IEEE Trans. Geosci. Remote Sens., 34 (4), pp. 892-905
  • Wan, Z., MODIS land surface temperature Algorithm Theoretical Basis Document (LST ATBD), version 3.3 (1999), https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf, (Available online at:); Wan, Z., Collection 5. MODIS Land surface temperature products user's guide (2006), http://icess.eri.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide_C5.pdf, (Available online at:); Wang, G., Kim, Y., Wang, D., Quantifying the strength of soilmoisture-precipitation coupling and its sensitivity to changes in surfacewater budget (2007) J. Hydrometeorol., 8, pp. 551-570
  • Willmott, C.J., Matsuura, K., Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999) (2001), http://climate.geog.udel.edu/∼climate/html_pages/README.ghcn_ts2.html; Zeng, X., Barlage, M., Castro, C., Fling, K., Comparison of land–precipitation coupling strength using observations and models (2010) J. Hydrometeor, 11, pp. 979-994
  • Zhou, J., Lau, K.M., Principal modes of interannual and decadal variability of summer rainfall over South America (2001) Int. J. Climatol., 21 (13), pp. 1623-1644
  • Zhou, J., Zhang, X., Zhanand, W., Zhang, H., Land surface temperature retrieval from MODIS data by integrating regression models and the genetic algorithm in an arid region (2014) Remote Sens., 2014 (6), pp. 5344-5367

Citas:

---------- APA ----------
Spennemann, P.C., Salvia, M., Ruscica, R.C., Sörensson, A.A., Grings, F. & Karszenbaum, H. (2018) . Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models. International Journal of Applied Earth Observation and Geoinformation, 64, 96-103.
http://dx.doi.org/10.1016/j.jag.2017.08.016
---------- CHICAGO ----------
Spennemann, P.C., Salvia, M., Ruscica, R.C., Sörensson, A.A., Grings, F., Karszenbaum, H. "Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models" . International Journal of Applied Earth Observation and Geoinformation 64 (2018) : 96-103.
http://dx.doi.org/10.1016/j.jag.2017.08.016
---------- MLA ----------
Spennemann, P.C., Salvia, M., Ruscica, R.C., Sörensson, A.A., Grings, F., Karszenbaum, H. "Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models" . International Journal of Applied Earth Observation and Geoinformation, vol. 64, 2018, pp. 96-103.
http://dx.doi.org/10.1016/j.jag.2017.08.016
---------- VANCOUVER ----------
Spennemann, P.C., Salvia, M., Ruscica, R.C., Sörensson, A.A., Grings, F., Karszenbaum, H. Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models. Int. J. Appl. Earth Obs. Geoinformation. 2018;64:96-103.
http://dx.doi.org/10.1016/j.jag.2017.08.016