Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A high-resolution geophysical study was carried out in a region of the retroarc of the Patagonian Andes located on the western slope of the Sierra de El Maitén. This structure is characterized by an imbricated west-vergent fault system developed in the orogenic front area of the North Patagonian Andes that has uplifted. Oligocene volcanic rocks (Ventana Formation) affect Miocene to Quaternary sediments. Even though neotectonic fault scarps are affecting Quaternary deposits in the foothills of this range, no direct observation of slip in Quaternary strata was determined. The main objective of this study is to determine geometry of recognized neotectonic structures, characterizing them by variations in magnetic susceptibility, density, and p-wave velocities. The combined application of different geophysical methods has allowed the characterization of the bedrock geometry and the determination of neotectonic displacements along faults. The potential field model and its integration with a seismic profile show the accurate geometry of this tectonic zone, which is crucial for seismogenic hazard analysis, in the area of northern Patagonia, a highly significant economic zone due to tourism with several towns (El Maitén, Esquel, and San Carlos de Bariloche) dispersed throughout the area of young tectonic activity. © 2016 European Association of Geoscientists & Engineers.

Registro:

Documento: Artículo
Título:Multiple geophysical methods used to examine neotectonic structures in the western foothills of the Sierra de El Maitén (Argentina), North Patagonian Andes
Autor:Klinger, F.L.; Orts, D.; Gimenez, M.; Folguera, A.; Martinez, P.
Filiación:Instituto Geofísico Sismológico Volponi, Universidad Nacional de San Juan, San Juan, J5402CWH, Argentina
Laboratorio de Tectónica Andina, Instituto de Estudios Andinos Don Pablo Groeber (IDEAN), Universidad de Buenos Aires-CONICETj, Buenos Aires, C1428EGA, Argentina
Palabras clave:Gravimetric method; Magnetometric method; Neotectonic structure; Seismic method
Año:2016
Volumen:14
Número:3
Página de inicio:255
Página de fin:262
DOI: http://dx.doi.org/10.3997/1873-2016003
Título revista:Near Surface Geophysics
Título revista abreviado:Near Surf. GeoPhys.
ISSN:15694445
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15694445_v14_n3_p255_Klinger

Referencias:

  • Barry, K.M., Delay-time and its application to refraction profile interpretation (1967) Seismic Refraction Prospecting, pp. 348-361. , ed A. W. Musgrave, Society of Exploration Geophysicists
  • Blakely, R.J., (1995) Potential Theory in Gravity and Magnetic Applications, 411p. , Cambridge, UK: Cambridge University Press
  • Briggs, I.C., Machine contouring using minimum curvature (1974) Geophysics, 39 (1), pp. 39-48
  • Brocher, T.M., Empirical relations between elastic wavespeeds and density in the Earth's crust (2005) Bulletin of the Seismological Society of America, 95 (6), pp. 2081-2092
  • Cazau, L., Mancini, D., Cangini, J., Spalletti, L., Cuenca de Ñirihuau (1989) Cuencas Sedimentarias Argentinas Serie Correlación Geológica, 6, pp. 299-318. , eds G. Chebli and L. Sapalletti, Tucumán, Argentina
  • Chapman, C.H., The Radon transform and seismic tomography (1987) Seismic Tomography, pp. 25-47. , ed G. Nolet, Reidel Publishing Company
  • Christensen, N.I., Mooney, W.D., Seismic velocity structure and composition of the continental crust: A global view (1995) Journal of Geophysical Research, 10 (100), pp. 9761-9788
  • Ebbing, J., Braitenberg, C., Götze, H.J., The lithospheric density structure of the Eastern Alps (2006) Tectonophysics, 414, pp. 145-155
  • Encinas, A., Finger, K.L., Buatois, L.A., Peterson, D.E., Major forearc subsidence and deep-marine Miocene sedimentation in the present Coastal Cordillera and Longitudinal Depression of south-central Chile (38° 30' S-41° 45' S) (2012) Geological Society of America Bulletin, 124 (7-8), pp. 1262-1277
  • Giacosa, R.E., Afonso, J.C., Heredia, N., Paredes, J., Tertiary tectonics of the sub-Andean region of the North Patagonian Andes, southern central Andes of Argentina (41-42°30' S) (2005) Journal of South American Earth Sciences, 20 (3), pp. 157-170
  • Hagedoorn, J.G., The plus-minus method of interpreting seismic refraction sections (1959) Geophysical Prospecting, 7 (1), pp. 158-182
  • Hawkins, L.V., The reciprocal method of routine shallow seismic refraction investigations (1961) Geophysics, 26 (6), pp. 806-819
  • Hayashi, K., Takahashi, T., High resolution seismic refraction method using surface and borehole data for site characterization of rocks (2001) International Journal of Rock Mechanics and Mining Sciences, 38, pp. 807-813
  • Heiland, C.A., (1940) Geophysical Exploration, 1013p. , ed N. E. A. Hinds. New York, NY: Prentice Hall, Inc
  • Kane, M.F., A comprehensive system of terrain corrections using a digital computer (1962) Geophysics, 27 (4), pp. 455-462
  • Lavenu, A., Cembrano, J., Compressional- and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and southern Chile) (1999) Journal of Structural Geology, 21 (12), pp. 1669-1691
  • Longman, I.M., Formulas for computing tidal accelerations due to the moon and the sun (1959) Journal of Geophysical Research, 64, pp. 2351-2355
  • Marquardt, D.W., An algorithm for least-squares estimation of nonlinear parameters (1963) Journal of the Society for Industrial and Applied Mathematics, 11, pp. 431-441
  • Martínez, O.A., Coronato, A.M.J., The Late Cenozoic fluvial deposits of Argentine Patagonia (2008) The Late Cenozoic of Patagonia and Tierra del Fuego, pp. 205-226. , ed J. Rabassa, Amsterdam, The Netherlands: Elsevier
  • Maus, S., Sazonova, T., Hemant, K., Fairhead, J.D., Ravat, D., National geophysical data center candidate for the world digital magnetic anomaly map (2007) Geochemistry, Geophysics, Geosystems, 8, p. Q06017
  • Morelli, C., Gantar, C., Honkasalon, T., McConnel, K., Tanner, J.G., Szabo, B., The International Standardization Net 1971 (IGSN71) (1974) IUGG-IAG Special Publication Series 4. International Union of Geodesy and Geophysics, , Paris
  • Moser, T.J., Shortest path calculation of seismic rays (1991) Geophysics, 56 (1), pp. 59-67
  • Nagy, D., The gravitational attraction of a right rectangular prism (1966) Geophysics, 30 (4), pp. 362-371
  • Orts, D.L., Folguera, A., Encinas, A., Ramos, M.E., Tobal, J., Ramos, V., Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30'-43°S) (2012) Tectonics, 31 (3), pp. 1-24
  • Palmer, D., The generalized reciprocal method of seismic refraction interpretation (1980) Society of Exploration Geophysics, 104p
  • Ramos, M., Orts, D., Calatayud, F., Pazos, P., Folguera, A., Ramos, V., Estructura, estratigrafía y evolución tectónica de la cuenca de Ñirihuau en las nacientes del río Cushamen, Chubut (2011) Revista de la Asociación Geológica Argentina, 68 (2), pp. 210-224
  • Rapela, C.W., Spalletti, L., Merodio, J., Aragón, E., Temporal evolution and spatial variation of early Tertiary volcanism in the Patagonian Andes (40°S-42°30'S) (1988) Journal of South American Earth Sciences, 1 (1), pp. 75-88
  • Rapela, C.W., Pankhurst, R.J., Fanning, C.M., Hervé, F., Pacific subduction coeval with the Karoo mantle plume: The Early Jurassic Subcordilleran belt of northwestern Patagonia (2005) Geological Society of London, Special Publications, 246 (1), pp. 217-239
  • Spector, A., Grant, F., Statistical models for interpreting aero-magnetic data (1970) Geophysics, 35 (2), pp. 293-302
  • Talwani, M., Worzel, J.L., Landisman, M., Rapid gravity computations for two dimensional bodies with application to the Mendocino submarine fracture (1959) Journal of Geophysical Research, 64 (1), pp. 49-59
  • White, D.J., Two-dimensional seismic refraction tomography (1989) Geophysical Journal International, 97, pp. 223-245
  • Zhang, J., Toksoz, M.N., Nonlinear refraction travel time tomography (1998) Geophysics, 63 (5), pp. 1726-1737

Citas:

---------- APA ----------
Klinger, F.L., Orts, D., Gimenez, M., Folguera, A. & Martinez, P. (2016) . Multiple geophysical methods used to examine neotectonic structures in the western foothills of the Sierra de El Maitén (Argentina), North Patagonian Andes. Near Surface Geophysics, 14(3), 255-262.
http://dx.doi.org/10.3997/1873-2016003
---------- CHICAGO ----------
Klinger, F.L., Orts, D., Gimenez, M., Folguera, A., Martinez, P. "Multiple geophysical methods used to examine neotectonic structures in the western foothills of the Sierra de El Maitén (Argentina), North Patagonian Andes" . Near Surface Geophysics 14, no. 3 (2016) : 255-262.
http://dx.doi.org/10.3997/1873-2016003
---------- MLA ----------
Klinger, F.L., Orts, D., Gimenez, M., Folguera, A., Martinez, P. "Multiple geophysical methods used to examine neotectonic structures in the western foothills of the Sierra de El Maitén (Argentina), North Patagonian Andes" . Near Surface Geophysics, vol. 14, no. 3, 2016, pp. 255-262.
http://dx.doi.org/10.3997/1873-2016003
---------- VANCOUVER ----------
Klinger, F.L., Orts, D., Gimenez, M., Folguera, A., Martinez, P. Multiple geophysical methods used to examine neotectonic structures in the western foothills of the Sierra de El Maitén (Argentina), North Patagonian Andes. Near Surf. GeoPhys. 2016;14(3):255-262.
http://dx.doi.org/10.3997/1873-2016003