Artículo

Goldberg, E.; Suárez, C.; Alfonso, M.; Marchese, J.; Soba, A.; Marshall, G. "Cell membrane electroporation modeling: A multiphysics approach" (2018) Bioelectrochemistry. 124:28-39
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Electroporation-based techniques, i.e. techniques based on the perturbation of the cell membrane through the application of electric pulses, are widely used at present in medicine and biotechnology. However, the electric pulse - cell membrane interaction is not yet completely understood neither explicitly formalized. Here we introduce a Multiphysics (MP) model describing electric pulse - cell membrane interaction consisting on the Poisson equation for the electric field, the Nernst-Planck equations for ion transport (protons, hydroxides, sodium or calcium, and chloride), the Maxwell tensor and mechanical equilibrium equation for membrane deformations (with an explicit discretization of the cell membrane), and the Smoluchowski equation for membrane permeabilization. The MP model predicts that during the application of an electric pulse to a spherical cell an elastic deformation of its membrane takes place affecting the induced transmembrane potential, the pore creation dynamics and the ionic transport. Moreover, the coincidence among maximum membrane deformation, maximum pore aperture, and maximum ion uptake is predicted. Such behavior has been corroborated experimentally by previously published results in red blood and CHO cells as well as in supramolecular lipid vesicles. © 2018

Registro:

Documento: Artículo
Título:Cell membrane electroporation modeling: A multiphysics approach
Autor:Goldberg, E.; Suárez, C.; Alfonso, M.; Marchese, J.; Soba, A.; Marshall, G.
Filiación:Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Laboratorio de Sistemas Complejos, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Física del Plasma, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Palabras clave:Electrochemotherapy; Electroporation; Ion transport; Mathematical modeling; Membrane deformation; Bioelectric potentials; Cells; Chlorine compounds; Electric fields; Ions; Mathematical models; Maxwell equations; Membranes; Poisson equation; Cell membrane interactions; Electrochemotherapy; Electroporation; Ion transports; Membrane electroporation; Membrane permeabilization; Nernst-Planck equations; Transmembrane potentials; Cytology; Article; biotechnology; cell membrane; cell volume; CHO cell line; electrochemotherapy; electroporation; erythrocyte; ion transport; lipid vesicle; mathematical model; membrane potential; nonhuman; animal; biological model; cell membrane; Cricetulus; electroporation; erythrocyte deformability; metabolism; physiology; procedures; calcium; chloride; Animals; Calcium; Cell Membrane; Chlorides; CHO Cells; Cricetulus; Electroporation; Erythrocyte Deformability; Erythrocytes; Ion Transport; Membrane Potentials; Models, Biological
Año:2018
Volumen:124
Página de inicio:28
Página de fin:39
DOI: http://dx.doi.org/10.1016/j.bioelechem.2018.06.010
Título revista:Bioelectrochemistry
Título revista abreviado:Bioelectrochemistry
ISSN:15675394
CODEN:BIOEF
CAS:calcium, 7440-70-2, 14092-94-5; chloride, 16887-00-6; Calcium; Chlorides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v124_n_p28_Goldberg

Referencias:

  • Yarmush, M., Golberg, A., Sersa, G., Kotnik, T., Miklavcic, D., Electroporation-based technologies for medicine: principles, applications, and challenges (2014) Biomed. Eng., 16 (1), p. 295
  • Venslauskas, M., Satkauskas, S., Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation (2015) Eur. Biophys. J., 44 (5), pp. 277-289
  • Knorr, D., Ade-Omowaye, B., Heinz, V., Nutritional improvement of plant foods by non-thermal processing (2002) Proc. Nutr. Soc., 61 (2), pp. 311-318
  • Poyatos, J., Almecija, M., Garcia-Mesa, J., Munio, M., Hontoria, E., Torres, J., Osorio, F., Advanced methods for the elimination of microorganisms in industrial treatments: potential applicability to wastewater reuse (2011) Water Environ. Res., 83 (3), pp. 233-246
  • Miklavcic, D., Handbook of Electroporation (2016), Springer International Publishing AG; Mir, L., Bases and rationale of the electrochemotherapy (2006) Eur. J. Cancer Suppl., 4 (11), pp. 38-44
  • Miklavcic, D., Mali, B., Kos, B., Heller, R., Sersa, G., Electrochemotherapy: from the drawing board into medical practice (2014) Biomed. Eng. Online, 13 (1), p. 29
  • Escoffre, J., Portet, T., Wasungu, L., Teissié, J., Dean, D., Rols, M., What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues (2009) Mol. Biotechnol., 41 (3), pp. 286-295
  • Mir, L., Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future (2009) Mol. Biotechnol., 43 (2), pp. 167-176
  • Arena, C., Sano, M., Rossmeisl, J., Caldwell, J., Garcia, P., Rylander, M., Davalos, R., High-frequency irreversible electroporation (HFIRE) for non-thermal ablation without muscle contraction (2011) Biomed. Eng. Online, 10 (1), p. 102
  • Wagstaff, P., Buijs, M., van den Bos, W., de Bruin, D., Zondervan, P., de la Rosette, J., Laguna Pes, M., Irreversible electroporation: state of the art (2016) Oncol. Targets Ther., 9, pp. 2437-2446
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., The lipid bilayer (2007) Molecular Biology of the Cell, , 5th ed. Garland Science New York
  • Pucihar, G., Kotnik, T., Valic, B., Miklavcic, D., Numerical determination of transmembrane voltage induced on irregularly shaped cells (2006) Ann. Biomed. Eng., 34 (4)
  • Hu, Q., Joshi, R., Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort electrical pulse (2009) Phys. Rev. E, 79, p. 011901
  • Kotnik, T., Pucihar, G., Miklavcic, D., Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport (2010) J. Membr. Biol., 236 (1)
  • Krassowska, W., Filev, P., Modeling electroporation in a single cell (2007) Biophys. J., 92 (2)
  • Rems, L., Tarek, M., Casciola, M., Miklavcic, D., Properties of lipid electropores II: comparison of continuum-level modeling of pore conductance to molecular dynamics simulations (2016) Bioelectrochemistry, 112
  • Pavlin, M., Leben, V., Miklavcic, D., Electroporation in dense cell suspension: theoretical and experimental analysis of ion diffusion and cell permeabilization (2007) Biochim. Biophys. Acta, Gen. Subj., 1770 (1)
  • Pavlin, M., Miklavcic, D., Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation: relation between short-lived and long-lived pores (2008) Bioelectrochemistry, 74 (1)
  • Zheng, Q., Chen, D., Wei, G., Second-order Poisson–Nernst–Planck solver for ion transport (2011) J. Comput. Phys., 230 (13)
  • Li, J., Lin, H., Numerical simulation of molecular uptake via electroporation (2011) Bioelectrochemistry, 82 (1)
  • Li, J., Tan, W., Yu, M., Lin, H., The effect of extracellular conductivity on electroporation-mediated molecular delivery (2013) Biochim. Biophys. Acta, 1828
  • Jackson, J., Classical Electrodynamics (1962), 3th ed. John Wiley & Sons Inc; Mott, P., Dorgan, J., Roland, C., The bulk modulus and Poisson's ratio of “incompressible” materials (2008) J. Sound Vib., 312 (4)
  • Portet, T., Mauroy, C., Démery, V., Houles, T., Escoffre, J.-M., Dean, D., Rols, M.-P., Destabilizing giant vesicles with electric fields: an overview of current applications (2012) J. Membr. Biol., 245
  • Colombo, L., González, G., Marshall, G., Molina, F., Soba, A., Suárez, C., Turjanski, P., Ion transport in tumors under electrochemical treatment: in vivo, in vitro and in silico modeling (2007) Bioelectrochemistry, 71 (2)
  • Turjanski, P., Olaiz, N., Abou-Adal, P., Suarez, C., Risk, M., Marshall, G., pH front tracking in the electrochemical treatment (EChT) of tumors: experiments and simulations (2009) Electrochim. Acta, 54 (26)
  • Olaiz, N., Maglietti, F., Suárez, C., Molina, F., Miklavcic, D., Mir, L., Marshall, G., Electrochemical treatment of tumors using a one-probe two-electrode device (2010) Electrochim. Acta, 55 (20)
  • Olaiz, N., Suárez, C., Risk, M., Molina, F., Marshall, G., Tracking protein electrodenaturation fronts in the electrochemical treatment of tumors (2010) Electrochem. Commun., 12 (1)
  • Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suárez, C., Molina, F., Marshall, G., The role of pH fronts in reversible electroporation (2011) PLoS One, 6 (4)
  • Maglietti, F., Michinski, S., Olaiz, N., Castro, M., Suárez, C., Marshall, G., The role of pH fronts in tissue electroporation-based treatments (2013) Plos One, 8 (11)
  • Olaiz, N., Signori, E., Maglietti, F., Soba, A., Suárez, C., Turjanski, P., Marshall, G., Tissue damage modeling in gene electrotransfer: the role of pH (2014) Bioelectrochemistry, 100
  • Humphries, S., Jr., Finite-element Methods for Electromagnetics (2010), 1st ed. CRC Press; Tsong, T., Electroporation of cell membranes (1991) Biophys. J., 60 (2), p. 297
  • Hibino, M., Itoh, H., Kinosita, K., Time courses of cell electroporation as revealed by submicroscopic imaging of transmembrane potential (1993) Biophys. J., 64
  • Zienkiewicz, O., Taylor, R., The Finite Element Method (Volume I: The Basis) (2000), 5th Ed Butterworth-Heinemann; Rao, S., The Finite Element Method in Engineering (2005), 4th ed. Butterworth-Heinemann Burlington; Dhatt, G., Lefrançois, E., Touzot, G., Finite Element Method (2012), John Wiley & Sons Hoboken; Marino, M., Olaiz, N., Signori, E., Maglietti, F., Suarez, C., Michinski, S., Marshall, G., pH fronts and tissue natural buffer interaction in gene electrotransfer protocols (2017) Electrochim. Acta
  • Henon, S., Lenormand, G., Richert, A., Gallet, F., A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers (1999) Biophys. J., 76 (2)
  • Hochmuth, R., Mohandas, N., Blackshear, P., Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique (1973) Biophys. J., 13 (8)
  • McConnell, L., Miksis, M., Vlahovska, P., Continuum modeling of the electric-field-induced tension in deforming lipid vesicles (2015) J. Chem. Phys., 143
  • Mauroy, C., Rico-Lattes, I., Teissie, J., Rois, M., Electric destabilization of supramolecular lipid vesicles subjected to fast electric pulses (2015) Langmuir, 31 (44)
  • Engelhard, H., Sackmann, E., On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high-frequency electric fields (1988) Biophys. J., 54
  • Gabriel, B., Teissie, J., Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse (1999) Biophys. J., 76 (4)
  • Pucihar, G., Kotnik, T., Miklavčič, D., Teissié, J., Kinetics of transmembrane transport of small molecules into electropermeabilized cells (2008) Biophys. J., 95
  • Napotnik, T., Rebersek, M., Vernier, T., Mali, B., Miklavcic, D., Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review (2016) Bioelectrochemistry, 110
  • Nuccitelli, R., Tran, K., Huynh, J., Athos, B., Kreis, M., Nuccitelli, P., De Falbo, F., Non-thermal nanoelectroablation of UV-induced murine melanomas stimulates an immune response (2012) Pigment Cell Melanoma Res., 25 (5)
  • Gabriel, B., Teissie, J., Generation of reactive oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability (1994) Eur. J. Biochem., 223 (1)
  • Maccarrone, M., Bladergroen, M., Rosato, N., Finazzi-Agro, A., Role of lipid peroxidation in electroporation-induced cell permeability (1995) Biochem. Biophys. Res. Commun., 209 (2)
  • Vernier, P., Levine, Z., Wu, Y., Joubert, V., Ziegler, M., Mir, L., Tieleman, D., Electroporating fields target oxidatively damaged áreas in the cell membrane (2009) PLoS One, 4 (11)
  • Stewart, D.A., Jr., Gowrishankar, T.R., Smith, K.C., Weaver, J.C., Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method (2005) IEEE Trans. Biomed. Eng., 52, p. 10
  • Leguèbe, M., Silve, A., Mir, L.M., Poignard, C., Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments (2014) J. Theor. Biol., 360, pp. 83-94
  • Kavian, O., Leguèbe, M., Poignard, C., Weynans, L., “Classical” Electropermeabilization modeling at the cell scale (2014) J. Math. Biol., 235-265 (2014), p. 68
  • Neu, J., Krassowska, W., Singular perturbation analysis of the pore creation transient (2006) Phys. Rev. E, 74 (31917), pp. 1-9
  • Voyer, D., Silve, A., Mir, L.M., Scorretti, R., Poignard, C., Dynamical modeling of tissue electroporation (2018) Bioelectrochemistry, 119, pp. 98-110

Citas:

---------- APA ----------
Goldberg, E., Suárez, C., Alfonso, M., Marchese, J., Soba, A. & Marshall, G. (2018) . Cell membrane electroporation modeling: A multiphysics approach. Bioelectrochemistry, 124, 28-39.
http://dx.doi.org/10.1016/j.bioelechem.2018.06.010
---------- CHICAGO ----------
Goldberg, E., Suárez, C., Alfonso, M., Marchese, J., Soba, A., Marshall, G. "Cell membrane electroporation modeling: A multiphysics approach" . Bioelectrochemistry 124 (2018) : 28-39.
http://dx.doi.org/10.1016/j.bioelechem.2018.06.010
---------- MLA ----------
Goldberg, E., Suárez, C., Alfonso, M., Marchese, J., Soba, A., Marshall, G. "Cell membrane electroporation modeling: A multiphysics approach" . Bioelectrochemistry, vol. 124, 2018, pp. 28-39.
http://dx.doi.org/10.1016/j.bioelechem.2018.06.010
---------- VANCOUVER ----------
Goldberg, E., Suárez, C., Alfonso, M., Marchese, J., Soba, A., Marshall, G. Cell membrane electroporation modeling: A multiphysics approach. Bioelectrochemistry. 2018;124:28-39.
http://dx.doi.org/10.1016/j.bioelechem.2018.06.010