Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The present study was aimed to test an electrochemical sensing approach for the detection of an active chemolithotrophic metabolism (and therefore the presence of chemolithotrophic microorganisms) by using the corrosion of pyrite by Acidithiobacillus ferrooxidans as a model. Different electrochemical techniques were combined with adhesion studies and scanning electron microscopy (SEM). The experiments were performed in presence or absence of A. ferrooxidans and without or with ferrous iron in the culture medium (0 and 0.5 g L−1, respectively). Electrochemical parameters were in agreement with voltammetric studies and SEM showing that it is possible to distinguish between an abiotically-induced corrosion process (AIC) and a microbiologically-induced corrosion process (MIC). The results show that our approach not only allows the detection of chemolithotrophic activity of A. ferrooxidans but also can characterize the corrosion process. This may have different kind of applications, from those related to biomining to life searching missions in other planetary bodies. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:An electrochemical sensing approach for scouting microbial chemolithotrophic metabolisms
Autor:Saavedra, A.; Figueredo, F.; Cortón, E.; Abrevaya, X.C.
Filiación:Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Instituto de Astronomía y Física del Espacio (IAFE), CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Acidithiobacillus ferrooxidans; Biomining; In-situ life detection; Microbiologically-induced corrosion; Pyrite mineral; Electrochemical sensors; Metabolism; Pyrites; Scanning electron microscopy; Acidithiobacillus ferrooxidans; Biomining; Electrochemical parameters; Electrochemical sensing; Electrochemical techniques; In-situ life detection; Microbiologically induced corrosion; Voltammetric studies; Corrosion; ferrous ion; pyrite; iron; sulfide; Acidithiobacillus ferrooxidans; analytic method; Article; bacterial growth; bacterium adherence; chemolithoautotroph; controlled study; cyclic potentiometry; electrochemistry; microbial corrosion; microbial metabolism; nonhuman; pH; scanning electron microscopy; Acidithiobacillus; chemistry; corrosion; culture medium; cytology; devices; electrochemical analysis; electrode; growth, development and aging; metabolism; Acidithiobacillus; Bacterial Adhesion; Corrosion; Culture Media; Electrochemical Techniques; Electrodes; Hydrogen-Ion Concentration; Iron; Sulfides
Año:2018
Volumen:123
Página de inicio:125
Página de fin:136
DOI: http://dx.doi.org/10.1016/j.bioelechem.2018.04.020
Título revista:Bioelectrochemistry
Título revista abreviado:Bioelectrochemistry
ISSN:15675394
CODEN:BIOEF
CAS:ferrous ion, 15438-31-0; pyrite, 1309-36-0; iron, 14093-02-8, 53858-86-9, 7439-89-6; sulfide, 18496-25-8; Culture Media; Iron; pyrite; Sulfides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v123_n_p125_Saavedra

Referencias:

  • Templeton, A.S., Geomicrobiology of iron in extreme environments (2011) Elements, 7, pp. 95-100
  • Hedrich, S., Schlomann, M., Johnson, D.B., The iron-oxidizing proteobacteria (2011) Microbiology, 157, pp. 1551-1564
  • Zolotov, M.Y., Shock, E.L., Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars (2005) Geophys. Res. Lett., 32
  • Jensen, A.B., Webb, C., Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review (1995) Process Biochem., 30, pp. 225-236
  • Tuovinen, O.H., Kelly, D.P., Studies on the growth of Thiobacillus ferrooxidans (1973) Arch. Mikrobiol., 88, pp. 285-298
  • Vera, M., Schippers, A., Sand, W., Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A (2013) Appl. Microbiol. Biotechnol., 97, pp. 7529-7541
  • Ohmura, N., Sasaki, K., Matsumoto, N., Saiki, H., Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans (2002) J. Bacteriol., 184, pp. 2081-2087
  • Osorio, H., Mangold, S., Denis, Y., Nancucheo, I., Esparza, M., Johnson, D.B., Bonnefoy, V., Holmes, D.S., Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans (2013) Appl. Environ. Microbiol., 79, pp. 2172-2181
  • Gleisner, M., Herbert, R.B., Frogner Kockum, P.C., Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen (2006) Chem. Geol., 225, pp. 16-29
  • Singer, P.C., Stumm, W., Acidic mine drainage: the rate-determining step (1970) Science, 167, pp. 1121-1123
  • Pisapia, C., Humbert, B., Chaussidon, M., Mustin, C., Perforative corrosion of pyrite enhanced by direct attachment of Acidithiobacillus ferrooxidans (2008) Geomicrobiol J., 25, pp. 261-273
  • Silverman, M.P., Ehrlich, H.L., Microbial Formation and Degradation of Minerals (1964), pp. 153-206; Kip, N., van Veen, J.A., The dual role of microbes in corrosion (2015) ISME J., 9, pp. 542-551
  • Brock, T.D., Gustafson, J., Ferric iron reduction by sulfur- and iron-oxidizing bacteria (1976) Appl. Environ. Microbiol., 32, pp. 567-571
  • Sand, W., Gehrke, T., Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria (2006) Res. Microbiol., 157, pp. 49-56
  • Osseo-Asare, K., Semiconductor electrochemistry and hydrometallurgical dissolution processes (1992) Hydrometallurgy, 29, pp. 61-90
  • Tributsch, H., Rojas-Chapana, J., Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity (2000) Electrochim. Acta, 45, pp. 4705-4716
  • Debernardi, G., Carlesi, C., Chemical-electrochemical approaches to the study passivation of chalcopyrite (2013) Miner. Process. Extr. Metall. Rev., 34, pp. 10-41
  • Bauermeister, A., Rettberg, P., Flemming, H.C., Growth of the acidophilic iron–sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions (2014) Planet. Space Sci., 98, pp. 205-215
  • Kim, T.W., Kim, C.J., Chang, Y.K., Ryu, H.W., Cho, K.S., Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidothiobacillus ferrooxidans cells (2002) Biotechnol. Prog., 18, pp. 752-759
  • Li, H., Wang, J., Chu, Q., Wang, Z., Zhang, F., Wang, S., Theoretical and experimental specific capacitance of polyaniline in sulfuric acid (2009) J. Power Sources, 190, pp. 578-586
  • Florian, B., Noël, N., Thyssen, C., Felschau, I., Sand, W., Some quantitative data on bacterial attachment to pyrite (2011) Miner. Eng., 24, pp. 1132-1138
  • Yu, R.L., Ou, Y., Tan, J.X., Wu, F.D., Sun, J., Miao, L., Zhong, D.L., Effect of EPS on adhesion of Acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces (2011) Trans. Nonferrous Metals Soc. China, 21, pp. 407-412
  • Liu, J., Li, Q., Sand, W., Zhang, R., Influence of Sulfobacillus thermosulfidooxidans on initial attachment and pyrite leaching by thermoacidophilic archaeon Acidianus sp. DSM 29099 (2016) Fortschr. Mineral., 6, p. 76
  • Cruz, R., Lázaro, I., González, I., Monroy, M., Acid dissolution influences bacterial attachment and oxidation of arsenopyrite (2005) Miner. Eng., 18, pp. 1024-1031
  • Liu, H., Yin, H., Dai, Y., Dai, Z., Liu, Y., Li, Q., Jiang, H., Liu, X., The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO2 fixation (2011) Arch. Microbiol., 193, pp. 857-866
  • Stern, M., Geaby, A.L., Electrochemical polarization (1957) J. Electrochem. Soc., 104, p. 56
  • Zhang, X.L., Jiang, Z.H., Yao, Z.P., Song, Y., Wu, Z.D., Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density (2009) Corros. Sci., 51, pp. 581-587
  • Bandy, R., Jones, D.A., Analysis of errors in measuring corrosion rates by linear polarization (1976) Corrosion, 32, pp. 126-134
  • Mansfeld, F., Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves (2005) Corros. Sci., 47, pp. 3178-3186
  • Luna-Sánchez, R.M., González, I., Lapidus, G.T., A comparative study of silver sulfide oxidation in cyanide media (2003) J. Electrochem. Soc., 150, p. D155
  • Garrett, T.R., Bhakoo, M., Zhang, Z., Bacterial adhesion and biofilms on surfaces (2008) Prog. Nat. Sci., 18, pp. 1049-1056
  • Blake, R.C., Shute, E.A., Howard, G.T., Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur (1994) Appl. Environ. Microbiol., 60, pp. 3349-3357
  • Meyer, G., Schneider-Merck, T., Böhme, S., Sand, W., A simple method for investigations on the chemotaxis of A. ferrooxidans and D. vulgaris (2002) Acta Biotechnol., 22, pp. 391-399
  • Klingl, A., Moissl-Eichinger, C., Wanner, G., Zweck, J., Huber, H., Thomm, M., Rachel, R., Analysis of the surface proteins of Acidithiobacillus ferrooxidans strain SP5/1 and the new, pyrite-oxidizing Acidithiobacillus isolate HV2/2, and their possible involvement in pyrite oxidation (2011) Arch. Microbiol., 193, pp. 867-882
  • Zhu, J., Huang, X., Zhang, F., Feng, L., Li, J., Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols (2015) J. Microbiol., 53, pp. 829-836
  • Harneit, K., Göksel, A., Kock, D., Klock, J.H., Gehrke, T., Sand, W., Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans (2006) Hydrometallurgy, 83, pp. 245-254
  • Dempers, C.J., Breed, A., Hansford, G., The kinetics of ferrous-iron oxidation by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans: effect of cell maintenance (2003) Biochem. Eng. J., 16, pp. 337-346
  • Lara, R.H., Vazquez-Arenas, J., Ramos-Sanchez, G., Galvan, M., Lartundo-Rojas, L., Experimental and theoretical analysis accounting for differences of pyrite and chalcopyrite oxidative behaviors for prospective environmental and bioleaching applications (2015) J. Phys. Chem. C, 119, pp. 18364-18379
  • Ahmadi, A., Influence of ferric and ferrous iron on chemical and bacterial leaching of copper flotation concentrates (2012) Int. J. Nonferrous Metall., 1, pp. 42-48
  • Johnson, D.B., Kanao, T., Hedrich, S., Redox transformations of iron at extremely low ph: fundamental and applied aspects (2012) Front. Microbiol., 3
  • Saavedra, A., Donati, E., Cortón, E., Reagent-free flow-injection amperometric sensor for quantification and speciation of iron for bio-hydrometallurgical applications (2015) Sensors Actuators B, 220, pp. 448-455
  • Ghahremaninezhad, A., Dixon, D.G., Asselin, E., Kinetics of the ferric–ferrous couple on anodically passivated chalcopyrite (CuFeS2) electrodes (2012) Hydrometallurgy, 125-126, pp. 42-49
  • Yu, R., Tan, J., Yang, P., Sun, J., Ouyang, X., Dai, Y., EPS-contact-leaching mechanism of chalcopyrite concentrates by A. ferrooxidans (2008) Trans. Nonferrous Metals Soc. China, 18, pp. 1427-1432
  • Antonijevic, M.M., Mihajlovic, R.P., Vukanovi, B.V., Natural monocrystalline pyrite as sensor for potentiometric redox titrations. Part I. Titrations with permanganate (2002) Sensors, 2, pp. 153-163
  • Vuković, M., Pesic, B., Štrbac, N., Mihajlović, I., Sokić, M., Linear polarization study of the corrosion of iron in the presence of Thiobacillus ferrooxidans bacteria (2012) Int. J. Electrochem. Sci., 7, pp. 2487-2503
  • Luna-Sánchez, R.M., González, I., Lapidus, G.T., Limitations for the use of Evans' diagrams to describe hydrometallurgical redox phenomena (2013) Electrometall. Environ. Hydrometall, pp. 1141-1150. , John Wiley & Sons, Inc. Hoboken, NJ, USA
  • Saavedra, A., Garcia-Meza, V., Cortón, E., González, I., Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching (2018) Electrochim. Acta, 265, pp. 569-576
  • de la Fuente, D., Díaz, I., Simancas, J., Chico, B., Morcillo, M., Long-term atmospheric corrosion of mild steel (2011) Corros. Sci., 53, pp. 604-617
  • Shi, Z., Liu, M., Atrens, A., Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation (2010) Corros. Sci., 52, pp. 579-588
  • Gu, G., Sun, X., Hu, K., Li, J., Qiu, G., Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans (2012) Trans. Nonferrous Metals Soc. China, 22, pp. 1250-1254
  • Worley, B.C., Ricks, W.A., Prendergast, M.P., Gregory, B.W., Collins, R., Cassimus, J.J., Thompson, R.G., Anodic passivation of tin by alkanethiol self-assembled monolayers examined by cyclic voltammetry and coulometry (2013) Langmuir, 29, pp. 12969-12981
  • Carbajosa, S., Malki, M., Caillard, R., Lopez, M.F., Palomares, F.J., Martín-Gago, J.A., Rodríguez, N., De Lacey, A.L., Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen (2010) Biosens. Bioelectron., 26, pp. 877-880
  • Lappin, A.G., Lewis, C.A., Ingledew, W.J., Kinetics and mechanisms of reduction of rusticyanin, a blue copper protein from Thiobacillus ferrooxidans, by inorganic cations (1985) Inorg. Chem., 24, pp. 1446-1450
  • Malarte, G., Leroy, G., Lojou, E., Abergel, C., Bruschi, M., Giudici-Orticoni, M.T., Insight into molecular stability and physiological properties of the diheme cytochrome CYC 41 from the acidophilic bacterium Acidithiobacillus ferrooxidans (2005) Biochemistry, 44, pp. 6471-6481
  • Keller, L., Murr, L.E., Acid-bacterial and ferric sulfate leaching of pyrite single crystals (1982) Biotechnol. Bioeng., 24, pp. 83-96
  • Liu, Y., Dang, Z., Wu, P., Lu, J., Shu, X., Zheng, L., Influence of ferric iron on the electrochemical behavior of pyrite (2011) Ionics (Kiel), 17, pp. 169-176
  • Liu, W., Zhang, X., Experimental study of microbial pyrite oxidation: a suggestion for geologically useful biosignatures (2015) Geomicrobiol J., 32, pp. 466-471
  • Rojas-Chapana, J.A., Tributsch, H., Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite (2004) FEMS Microbiol. Ecol., 47, pp. 19-29

Citas:

---------- APA ----------
Saavedra, A., Figueredo, F., Cortón, E. & Abrevaya, X.C. (2018) . An electrochemical sensing approach for scouting microbial chemolithotrophic metabolisms. Bioelectrochemistry, 123, 125-136.
http://dx.doi.org/10.1016/j.bioelechem.2018.04.020
---------- CHICAGO ----------
Saavedra, A., Figueredo, F., Cortón, E., Abrevaya, X.C. "An electrochemical sensing approach for scouting microbial chemolithotrophic metabolisms" . Bioelectrochemistry 123 (2018) : 125-136.
http://dx.doi.org/10.1016/j.bioelechem.2018.04.020
---------- MLA ----------
Saavedra, A., Figueredo, F., Cortón, E., Abrevaya, X.C. "An electrochemical sensing approach for scouting microbial chemolithotrophic metabolisms" . Bioelectrochemistry, vol. 123, 2018, pp. 125-136.
http://dx.doi.org/10.1016/j.bioelechem.2018.04.020
---------- VANCOUVER ----------
Saavedra, A., Figueredo, F., Cortón, E., Abrevaya, X.C. An electrochemical sensing approach for scouting microbial chemolithotrophic metabolisms. Bioelectrochemistry. 2018;123:125-136.
http://dx.doi.org/10.1016/j.bioelechem.2018.04.020