Artículo

Peinetti, A.S.; Ceretti, H.; Mizrahi, M.; González, G.A.; Ramírez, S.A.; Requejo, F.G.; Montserrat, J.M.; Battaglini, F. "Characterization and electrochemical response of DNA functionalized 2 nm gold nanoparticles confined in a nanochannel array" (2018) Bioelectrochemistry. 121:169-175
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Polyvalent gold nanoparticle oligonucleotide conjugates are subject of intense research. Even though 2 nm diameter AuNPs have been previously modified with DNA, little is known about their structure and electrochemical behavior. In this work, we examine the influence of different surface modification strategies on the interplay between the meso-organization and the molecular recognition properties of a 27-mer DNA strand. This DNA strand is functionalized with different sulfur-containing moieties and immobilized on 2 nm gold nanoparticles confined on a nanoporous alumina, working the whole system as an electrode array. Surface coverages were determined by EXAFS and the performance as recognition elements for impedance-based sensors is evaluated. Our results prove that low DNA coverages on the confined nanoparticles prompt to a more sensitive response, showing the relevance in avoiding the DNA strand overcrowding. The system was able to determine a concentration as low as 100 pM of the complementary strand, thus introducing the foundations for the construction of label-free genosensors at the nanometer scale. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Characterization and electrochemical response of DNA functionalized 2 nm gold nanoparticles confined in a nanochannel array
Autor:Peinetti, A.S.; Ceretti, H.; Mizrahi, M.; González, G.A.; Ramírez, S.A.; Requejo, F.G.; Montserrat, J.M.; Battaglini, F.
Filiación:INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Universidad Nacional de Gral. Sarmiento, J. M. Gutierrez 1150, Los Polvorines, Prov. de Bs. As. B1613GSX, Argentina
Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas – INIFTA, CONICET y Dto. Química, Fac. Cs Ex, UNLP, La Plata, 1900, Argentina
Palabras clave:Alumina; Fiber optic sensors; Gold; Metal nanoparticles; Nanoparticles; Oligonucleotides; Surface treatment; Complementary strand; Confined nanoparticles; Electrochemical behaviors; Electrochemical response; Impedance based sensors; Molecular recognition properties; Nano-channel arrays; Oligonucleotide conjugates; DNA; aluminum oxide; DNA; element; gold nanoparticle; nanochannel; sulfur; sulfur derivative; DNA; gold; immobilized nucleic acid; metal nanoparticle; nanomaterial; Article; clinical evaluation; concentration process; conjugation; DNA probe; DNA sequence; DNA strand; electrochemical analysis; electrochemical impedance spectroscopy; immobilization; impedance; molecular recognition; nanochannel array; particle size; sensitivity analysis; surface area; chemistry; electrochemical analysis; electrode; genetic procedures; nucleic acid hybridization; porosity; procedures; Aluminum Oxide; Biosensing Techniques; DNA; Electrochemical Techniques; Electrodes; Gold; Immobilized Nucleic Acids; Metal Nanoparticles; Nanostructures; Nucleic Acid Hybridization; Porosity
Año:2018
Volumen:121
Página de inicio:169
Página de fin:175
DOI: http://dx.doi.org/10.1016/j.bioelechem.2018.02.002
Título revista:Bioelectrochemistry
Título revista abreviado:Bioelectrochemistry
ISSN:15675394
CODEN:BIOEF
CAS:aluminum oxide, 1302-74-5, 1318-23-6, 1344-28-1, 14762-49-3; DNA, 9007-49-2; sulfur, 13981-57-2, 7704-34-9; gold, 7440-57-5; Aluminum Oxide; DNA; Gold; Immobilized Nucleic Acids
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v121_n_p169_Peinetti

Referencias:

  • Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology (2005) Chem. Rev., 105, pp. 1103-1170
  • Millan, K.M., Saraullo, A., Mikkelsen, S.R., Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode (1994) Anal. Chem., 66, pp. 2943-2948
  • Wang, J., Cai, X., Rivas, G., Shiraishi, H., Stripping potentiometric transduction of DNA hybridization processes (1996) Anal. Chim. Acta, 326, pp. 141-147
  • Teles, F.R.R., Fonseca, L.P., Trends in DNA biosensors (2008) Talanta, 77, pp. 606-623
  • Li, F., Peng, J., Zheng, Q., Guo, X., Tang, H., Yao, S., Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of MicroRNA24 (2015) Anal. Chem., 87, pp. 4806-4813
  • Abdul Rasheed, P., Sandhyarani, N., Quartz crystal microbalance genosensor for sequence specific detection of attomolar DNA targets (2016) Anal. Chim. Acta, 905, pp. 134-139
  • Luzi, E., Minunni, M., Tombelli, S., Mascini, M., New trends in affinity sensing: aptamers for ligand binding (2003) TrAC Trends Anal. Chem., 22, pp. 810-818
  • Guo, Q., Bao, Y., Yang, X., Wang, K., Wang, Q., Tan, Y., Amplified electrochemical DNA sensor using peroxidase-like DNAzyme (2010) Talanta, 83, pp. 500-504
  • Cui, L., Peng, R., Fu, T., Zhang, X., Wu, C., Chen, H., Liang, H., Tan, W., Biostable L-DNAzyme for sensing of metal ions in biological systems (2016) Anal. Chem., 88, pp. 1850-1855
  • Ozalp, V.C., Acoustic quantification of ATP using a quartz crystal microbalance with dissipation (2011) Analyst, 136, pp. 5046-5050
  • Papadakis, G., Tsortos, A., Bender, F., Ferapontova, E.E., Gizeli, E., Direct detection of DNA conformation in hybridization processes (2012) Anal. Chem., 84, pp. 1854-1861
  • Ceretti, H., Ponce, B., Ramírez, S.A., Montserrat, J.M., Adenosine reagentless electrochemical aptasensor using a phosphorothioate immobilization strategy (2010) Electroanalysis, 22, pp. 147-150
  • Zhang, X., Yadavalli, V.K., Surface immobilization of DNA aptamers for biosensing and protein interaction analysis (2011) Biosens. Bioelectron., 26, pp. 3142-3147
  • Li, Z., Zhang, L., Mo, H., Peng, Y., Zhang, H., Xu, Z., Zheng, C., Lu, Z., Size-fitting effect for hybridization of DNA/mercaptohexanol mixed monolayers on gold (2014) Analyst, 139, pp. 3137-3145
  • Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., Montserrat, J.M., Battaglini, F., Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors (2015) Nanoscale, 7, pp. 7763-7769
  • Campos, R., Kotlyar, A., Ferapontova, E.E., DNA-mediated electron transfer in DNA duplexes tethered to gold electrodes via phosphorothioated dA tags (2014) Langmuir, 30, pp. 11853-11857
  • Zhou, W., Wang, F., Ding, J., Liu, J., Tandem phosphorothioate modifications for DNA adsorption strength and polarity control on gold nanoparticles (2014) ACS Appl. Mater. Interfaces, 6, pp. 14795-14800
  • Lee, J.-S., Seferos, D.S., Giljohann, D.A., Mirkin, C.A., Thermodynamically controlled separation of polyvalent 2-nm gold nanoparticle-oligonucleotide conjugates (2008) J. Am. Chem. Soc., 130, pp. 5430-5431
  • Gonzalez Solveyra, E., Szleifer, I., What is the role of curvature on the properties of nanomaterials for biomedical applications? (2016) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 8, pp. 334-354
  • Peinetti, A.S., Herrera, S., Gonzalez, G.A., Battaglini, F., Synthesis of atomic metal clusters on nanoporous alumina (2013) Chem. Commun., 49, pp. 11317-11319
  • Huizenga, D.E., Szostak, J.W., A DNA aptamer that binds adenosine and ATP (1995) Biochemistry, 34, pp. 656-665
  • Ulman, A., Formation and structure of self-assembled monolayers (1996) Chem. Rev., 96, pp. 1533-1554
  • Ravel, B., Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT (2005) J. Synchrotron Radiat., 12, pp. 537-541
  • Li, Z., Jin, R., Mirkin, C.A., Letsinger, R.L., Multiple thiol-anchor capped DNA–gold nanoparticle conjugates (2002) Nucleic Acids Res., 30, pp. 1558-1562
  • Ramallo-López, J.M., Giovanetti, L.J., Requejo, F.G., Isaacs, S.R., Shon, Y.S., Salmeron, M., Molecular conformation changes in alkylthiol ligands as a function of size in gold nanoparticles: X-ray absorption studies (2006) Phys. Rev. B, 74
  • Lewis, D.J., Day, T.M., MacPherson, J.V., Pikramenou, Z., Luminescent nanobeads: attachment of surface reactive Eu(iii) complexes to gold nanoparticles (2006) Chem. Commun., p. 1433
  • Strong, L., Whitesides, G.M., Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies (1988) Langmuir, 4, pp. 546-558
  • Katz, E., Willner, I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors (2003) Electroanalysis, 15, pp. 913-947
  • Zen, K., Zhang, C.-Y., Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers (2012) Med. Res. Rev., 32, pp. 326-348
  • Hermann, T., Patel, D.J., Adaptive recognition by nucleic acid aptamers (2000) Science, 287, pp. 820-825. , http://science.sciencemag.org/content/287/5454/820.abstract
  • Owczarzy, R., Moreira, B.G., You, Y., Behlke, M.A., Walder, J.A., Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations (2008) Biochemistry, 47, pp. 5336-5353
  • SantaLucia, J., Hicks, D., The thermodynamics of DNA structural motifs (2004) Annu. Rev. Biophys. Biomol. Struct., 33, pp. 415-440
  • Rodriguez, M.C., Kawde, A.-N., Wang, J., Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge (2005) Chem. Commun., pp. 4267-4269
  • Peinetti, A.S., Gilardoni, R.S., Mizrahi, M., Requejo, F.G., González, G.A., Battaglini, F., Numerical simulation of the diffusion processes in nanoelectrode arrays using an axial neighbor symmetry approximation (2016) Anal. Chem., 88, pp. 5752-5759
  • Fleischmann, M., Pons, S., The behavior of microdisk and microring electrodes. Mass transport to the disk in the unsteady state: The ac response (1988) J. Electroanal. Chem. Interfacial Electrochem., 250, pp. 277-283
  • Ferrigno, R., Girault, H.H., Finite element simulation of electrochemical ac diffusional impedance. Application to recessed microdiscs (2000) J. Electroanal. Chem., 492, pp. 1-6
  • Rezaei Niya, S.M., Hoorfar, M., On a possible physical origin of the constant phase element (2016) Electrochim. Acta, 188, pp. 98-102
  • Song, H.-K., Hwang, H.-Y., Lee, K.-H., Dao, L.H., The effect of pore size distribution on the frequency dispersion of porous electrodes (2000) Electrochim. Acta, 45, pp. 2241-2257
  • Lin, C.H., Patel, D.J., Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP (1997) Chem. Biol., 4, pp. 817-832
  • Berg, J.M., Tymoczko, J.L., Gatto, G.J., Stryer, L., Biochemistry (2015), 8th ed. W.H. Freeman New York; Jiang, L., Zhang, H., Zhuang, J., Yang, B., Yang, W., Li, T., Sun, C., Sterically mediated two-dimensional architectures in aggregates of au nanoparticles directed by phosphorothioate oligonucleotide-DNA (2005) Adv. Mater., 17, pp. 2066-2070
  • Sheehan, P.E., Whitman, L.J., Detection limits for nanoscale biosensors (2005) Nano Lett., 5, pp. 803-807
  • Squires, T.M., Messinger, R.J., Manalis, S.R., Making it stick: convection, reaction and diffusion in surface-based biosensors (2008) Nat. Biotechnol., 26, pp. 417-426
  • Wang, X., Smirnov, S., Label-free DNA sensor based on surface charge modulated ionic conductance (2009) ACS Nano, 3, pp. 1004-1010

Citas:

---------- APA ----------
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., Montserrat, J.M.,..., Battaglini, F. (2018) . Characterization and electrochemical response of DNA functionalized 2 nm gold nanoparticles confined in a nanochannel array. Bioelectrochemistry, 121, 169-175.
http://dx.doi.org/10.1016/j.bioelechem.2018.02.002
---------- CHICAGO ----------
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., et al. "Characterization and electrochemical response of DNA functionalized 2 nm gold nanoparticles confined in a nanochannel array" . Bioelectrochemistry 121 (2018) : 169-175.
http://dx.doi.org/10.1016/j.bioelechem.2018.02.002
---------- MLA ----------
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., et al. "Characterization and electrochemical response of DNA functionalized 2 nm gold nanoparticles confined in a nanochannel array" . Bioelectrochemistry, vol. 121, 2018, pp. 169-175.
http://dx.doi.org/10.1016/j.bioelechem.2018.02.002
---------- VANCOUVER ----------
Peinetti, A.S., Ceretti, H., Mizrahi, M., González, G.A., Ramírez, S.A., Requejo, F.G., et al. Characterization and electrochemical response of DNA functionalized 2 nm gold nanoparticles confined in a nanochannel array. Bioelectrochemistry. 2018;121:169-175.
http://dx.doi.org/10.1016/j.bioelechem.2018.02.002