Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The biocatalytic electroreduction of oxygen has been studied on large surface area graphite and Vulcan® carbon electrodes with adsorbed Trametes trogii laccase. The electrokinetics of the O2 reduction reaction (ORR) was studied at different electrode potentials, O2 partial pressures and concentrations of hydrogen peroxide.Even though the overpotential at 0.25 mA·cm-2 for the ORR at T1Cu of the adsorbed laccase on carbon is 0.8 V lower than for Pt of similar geometric area, the rate of the reaction and thus the operative current density is limited by the enzyme reaction rate at the T2/T3 cluster site for the adsorbed enzyme. The transition potential for the rate determining step from the direct electron transfer (DET) to the enzyme reaction shifts to higher potentials at higher oxygen partial pressure.Hydrogen peroxide produced by the ORR on bare carbon support participates in an inhibition mechanism, with uncompetitive predominance at high H2O2 concentration, non-competitive contribution can be detected at low inhibitor concentration. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes
Autor:Adam, C.; Scodeller, P.; Grattieri, M.; Villalba, M.; Calvo, E.J.
Filiación:INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia Ravila 14b, Tartu, 50411, Estonia
Department of Chemistry, Materials and Chemical-Engineering, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy
Center for Bio-energy and Photosynthesis, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, United States
Palabras clave:Catalysis; Inhibition; Laccase; Nanostructured carbon; Oxygen reduction reaction (ORR); Catalysis; Electrodes; Electrohydrodynamics; Electrolytic reduction; Electromagnetic fields; Electron transitions; Enzyme electrodes; Enzymes; Graphite electrodes; Oxygen; Peroxides; Direct electron transfer; Electroreduction of oxygens; Inhibition mechanisms; Inhibitor concentration; Laccases; Nanostructured carbons; Oxygen reduction reaction; Rate determining step; Enzyme inhibition; carbon; graphite; hydrogen peroxide; laccase; nanomaterial; oxygen; carbon; immobilized enzyme; laccase; nanomaterial; oxygen; Article; biocatalysis; chemical reaction; current density; electrical parameters; electrochemistry; electron transport; electroreduction; enzyme mechanism; inhibition kinetics; nonhuman; oxygen electrode; oxygen reduction reaction; oxygen tension; surface area; Trametes; Trametes trogii; bioenergy; chemistry; electrode; enzymology; metabolism; microbiology; oxidation reduction reaction; Bioelectric Energy Sources; Carbon; Electrodes; Enzymes, Immobilized; Graphite; Laccase; Nanostructures; Oxidation-Reduction; Oxygen; Trametes
Año:2016
Volumen:109
Página de inicio:101
Página de fin:107
DOI: http://dx.doi.org/10.1016/j.bioelechem.2016.01.007
Título revista:Bioelectrochemistry
Título revista abreviado:Bioelectrochemistry
ISSN:15675394
CODEN:BIOEF
CAS:carbon, 7440-44-0; graphite, 7782-42-5; hydrogen peroxide, 7722-84-1; laccase, 80498-15-3; oxygen, 7782-44-7; Carbon; Enzymes, Immobilized; Graphite; Laccase; Oxygen
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v109_n_p101_Adam

Referencias:

  • Xu, F., Shin, W.S., Brown, S.H., Wahleithner, J.A., Sundaram, U.M., Solomon, E.I., A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability (1996) Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1292, pp. 303-311
  • Gallaway, J.W., Barton, S.A.C., Kinetics of redox polymer-mediated enzyme electrodes (2008) J. Am. Chem. Soc., 130, pp. 8527-8536
  • Mano, N., Soukharev, V., Heller, A., A laccase-wiring redox hydrogel for efficient catalysis of O-2 electroreduction (2006) J. Phys. Chem. B, 110, pp. 11180-11187
  • Scodeller, P., Carballo, R., Szamocki, R., Levin, L., Forchiassin, F., Calvo, E.J., Layer-by-layer self assembled osmium polymer mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide (2010) J. Am. Chem. Soc., 132, pp. 11132-11140
  • Blanford, C.F., Heath, R.S., Armstrong, F.A., A stable electrode for high-potential, electrocatalytic O-2 reduction based on rational attachment of a blue copper oxidase to a graphite surface (2007) Chem. Commun., pp. 1710-1712
  • Blanford, C.F., Heath, R.S., Armstrong, F.A., Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons (2008) Faraday Discussion 140: Electocatalysis - Theory and Experiment at the Interface, , Royal Society of Chemistry, Southampton, UK, A. Russell (Ed.)
  • Parimi, N.S., Umasankar, Y., Atanassov, P., Ramasamy, R.P., Kinetic and mechanistic parameters of laccase catalyzed direct electrochemical oxygen reduction reaction (2012) ACS Catal., 2, pp. 38-44
  • Sosna, M., Chretien, J.-M., Kilburn, J.D., Bartlett, P.N., Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation (2010) Phys. Chem. Chem. Phys., 12, pp. 10018-10026
  • Solomon, E.I., Baldwin, M.J., Lowery, M.D., Electronic-structures of active-sites in copper proteins - contributions to reactivity (1992) Chem. Rev., 92, pp. 521-542
  • Solomon, E.I., Sundaram, U.M., Machonkin, T.E., Multicopper oxidases and oxygenases (1996) Chem. Rev., 96, pp. 2563-2605
  • Chen, T., Barton, S.C., Binyamin, G., Gao, Z.Q., Zhang, Y.C., Kim, H.H., Heller, A., A miniature biofuel cell (2001) J. Am. Chem. Soc., 123, pp. 8630-8631
  • Palmore, G.T.R., Kim, H.H., Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell (1999) J. Electroanal. Chem., 464, pp. 110-117
  • Tarasevich, M.R., Bogdanovskaya, V.A., Kuznetsova, L.N., Bioelectrocatalytic reduction of oxygen in the presence of laccase adsorbed on carbon electrodes (2001) Russ. J. Electrochem., 37, pp. 833-837
  • Tarasevich, M.R., Yaropolov, A.I., Bogdanovskaya, V.A., Varfolomeev, S.D., Electrocatalysis of a cathodic oxygen reduction by laccase (1979) Bioelectrochem. Bioenerg., 6, pp. 393-403
  • Berezin, I.V., Bogdanovskaya, V.A., Varfolomeev, S.D., Tarasevich, M.R., Yaropolov, A.I., Equilibrium oxygen potential in the preswence of laccase (1978) Dokl. Akad. Nauk SSR, 240 (3), pp. 615-618
  • Thorum, M.S., Anderson, C.A., Hatch, J.J., Campbell, A.S., Marshall, N.M., Zimmerman, S.C., Lu, Y., Gewirth, A.A., Direct, electrocatalytic oxygen reduction by laccase on anthracene-2-methanethiol-modified gold (2010) J. Phys. Chem. Lett., 1, pp. 2251-2254
  • Thuesen, M.H., Farver, O., Reinhammar, B., Ulstrup, J., Cyclic voltammetry and electrocatalysis of the blue copper oxidase polyporus versicolor laccase (1998) Acta Chem. Scand., 52, pp. 555-562
  • Vaz-Dominguez, C., Campuzano, S., Rüdiger, O., Pita, M., Gorbacheva, M., Shleev, S., Fernandez, V.M., De Lacey, A.L., Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition (2008) Biosens. Bioelectron., 24, pp. 531-537
  • Blanford, C.F., Foster, C.E., Heath, R.S., Armstrong, F.A., Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons (2008) Faraday Discuss., 140, pp. 319-335
  • Sosna, M., Boer, H., Bartlett, P.N., A his-tagged Melanocarpus albomyces laccase and its electrochemistry upon immobilisation on NTA-modified electrodes and in conducting polymer films (2013) ChemPhysChem, 14, pp. 2225-2231
  • Sosna, M., Chrétien, J.M., Kilburn, J.D., Bartlett, P.N., Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation (2010) Phys. Chem. Chem. Phys., 12, pp. 10018-10026
  • Sosna, M., Stoica, L., Wright, E., Kilburn, J.D., Schuhmann, W., Bartlett, P.N., Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase (2012) Phys. Chem. Chem. Phys., 14, pp. 11882-11885
  • Armstrong, F.A., Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites (2005) Curr. Opin. Chem. Biol., 9, pp. 110-117
  • Dagys, M., Haberska, K., Shleev, S., Arnebrant, T., Kulys, J., Ruzgas, T., Laccase-gold nanoparticle assisted bioelectrocatalytic reduction of oxygen (2010) Electrochem. Commun., 12, pp. 933-935
  • Gutiérrez-Sánchez, C., Pita, M., Vaz-Domínguez, C., Shleev, S., De Lacey, A.L., Gold nanoparticles as electronic bridges for laccase-based biocathodes (2012) J. Am. Chem. Soc., 134, pp. 17212-17220
  • Shen, Y., Trauble, M., Wittstock, G., Electrodeposited noble metal particles in polyelectrolyte multilayer matrix as electrocatalyst for oxygen reduction studied using SECM (2008) Phys. Chem. Chem. Phys., 10, pp. 3635-3644
  • Shleev, S., Christenson, A., Serezhenkov, V., Burbaev, D., Yaropolov, A., Gorton, L., Ruzgas, T., Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode (2005) Biochem. J., 385, pp. 745-754
  • Shleev, S., Jarosz-Wilkolazka, A., Khalunina, A., Morozova, O., Yaropolov, A., Ruzgas, T., Gorton, L., Direct electron transfer reactions of laccases from different origins on carbon electrodes (2005) Bioelectrochemistry, 67, pp. 115-124
  • Shleev, S., Pita, M., Yaropolov, A.I., Ruzgas, T., Gorton, L., Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes (2006) Electroanalysis, 18, pp. 1901-1908
  • Shleev, S., Shumakovich, G., Morozova, O., Yaropolov, A., Stable 'floating' air diffusion biocathode based on direct electron transfer reactions between carbon particles and high redox potential laccase (2010) Fuel Cells, 10, pp. 726-733
  • Shrier, A., Giroud, F., Rasmussen, M., Minteer, S.D., Operational stability assays for bioelectrodes for biofuel cells: effect of immobilization matrix on laccase biocathode stability (2014) J. Electrochem. Soc., 161, pp. H244-H248
  • Climent, V., Zhang, J., Friis, E.P., Ostergaard, L.H., Ulstrup, J., Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes (2012) J. Phys. Chem. C, 116, pp. 1232-1243
  • Szamocki, R., Flexer, V., Levin, L., Forchiasin, F., Calvo, E.J., Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator (2009) Electrochim. Acta, 54, pp. 1970-1977
  • Milton, R.D., Giroud, F., Thumser, A.E., Minteer, S.D., Slade, R.C.T., Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement (2013) Phys. Chem. Chem. Phys., 15, pp. 19371-19379
  • Grattieri, M., Scodeller, P., Adam, C., Calvo, E.J., Non-competitive reversible inhibition of laccase by H2O2 in osmium mediated layer-by-layer multilayer O2 biocathodes (2015) J. Electrochem. Soc., 162, pp. G82-G86
  • Milton, R.D., Minteer, S.D., Investigating the reversible inhibition model of laccase by hydrogen peroxide for bioelectrocatalytic applications (2014) J. Electrochem. Soc., 161, pp. H3011-H3014
  • Garzillo, A.M., Colao, M.C., Buonocore, V., Oliva, R., Falcigno, L., Saviano, M., Santoro, A.M., Sannia, G., Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii (2001) Protein J., 20, pp. 191-201
  • Solomon, E.I., Baldwin, M.J., Lowery, M.D., Electronic structures of active sites in copper proteins: contributions to reactivity (1992) Chem. Rev., 92, pp. 521-542

Citas:

---------- APA ----------
Adam, C., Scodeller, P., Grattieri, M., Villalba, M. & Calvo, E.J. (2016) . Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes. Bioelectrochemistry, 109, 101-107.
http://dx.doi.org/10.1016/j.bioelechem.2016.01.007
---------- CHICAGO ----------
Adam, C., Scodeller, P., Grattieri, M., Villalba, M., Calvo, E.J. "Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes" . Bioelectrochemistry 109 (2016) : 101-107.
http://dx.doi.org/10.1016/j.bioelechem.2016.01.007
---------- MLA ----------
Adam, C., Scodeller, P., Grattieri, M., Villalba, M., Calvo, E.J. "Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes" . Bioelectrochemistry, vol. 109, 2016, pp. 101-107.
http://dx.doi.org/10.1016/j.bioelechem.2016.01.007
---------- VANCOUVER ----------
Adam, C., Scodeller, P., Grattieri, M., Villalba, M., Calvo, E.J. Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes. Bioelectrochemistry. 2016;109:101-107.
http://dx.doi.org/10.1016/j.bioelechem.2016.01.007