Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We report a spectroscopic, electrochemical and spectroelectrochemical characterization of the soluble cytochrome c domain (Cyt-D) from the Rhodothermus marinus caa3 terminal oxygen reductase and its putative electron donor, a high potential [4Fe-4S] protein (HiPIP). Cyt-D exhibits superior stability, particularly at the level of the heme pocket, compared to archetypical cytochromes in terms of thermal and chemical denaturation, alkaline transition and oxidative bleaching of the heme, which is further increased upon adsorption on biomimetic electrodes. Therefore, this protein is proposed as a suitable building block for electrochemical biosensing. As a proof of concept, we show that the immobilized Cyt-D exhibits good electrocatalytic activity towards H2O2 reduction. Relevant thermodynamic and kinetic electron transfer parameters for Cyt-D and HiPIP are also reported, including reorganization energies of 0.33eV and 0.42eV, respectively. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Stability, redox parameters and electrocatalytic activity of a cytochrome domain from a new subfamily
Autor:Molinas, M.F.; Benavides, L.; Castro, M.A.; Murgida, D.H.
Filiación:Departamento de Química, Inorgánica Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires, C1428EHA, Argentina
Palabras clave:Heme proteins; Hydrogen peroxide sensing; Iron-sulfur proteins; Protein electron transfer; SERR spectroelectrochemistry; Alkalinity; Biomimetics; Chemical stability; Electron transitions; Porphyrins; Spectroelectrochemistry; Electrocatalytic activity; Electrochemical biosensing; Electron transfer; Heme proteins; Hydrogen peroxide sensing; Iron-sulfur proteins; Reorganization energies; Spectroelectrochemical characterization; Proteins; cytochrome; heme; iron sulfur protein; oxidoreductase; cytochrome; Article; bleaching; catalysis; electrochemistry; electron transport; enzyme activity; enzyme denaturation; enzyme immobilization; enzyme stability; nonhuman; oxidation reduction reaction; Rhodothermus; thermodynamics; catalysis; chemistry; electrochemical analysis; enzyme stability; kinetics; metabolism; oxidation reduction reaction; Rhodothermus marinus; Catalysis; Cytochromes; Electrochemical Techniques; Enzyme Stability; Kinetics; Oxidation-Reduction; Thermodynamics
Año:2015
Volumen:105
Página de inicio:25
Página de fin:33
DOI: http://dx.doi.org/10.1016/j.bioelechem.2015.05.005
Título revista:Bioelectrochemistry
Título revista abreviado:Bioelectrochemistry
ISSN:15675394
CODEN:BIOEF
CAS:heme, 14875-96-8; oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; Cytochromes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15675394_v105_n_p25_Molinas

Referencias:

  • Bertini, I., Cavallaro, G., Rosato, A., Cytochrome c: occurrence and functions (2006) Chem. Rev., 106, pp. 90-115
  • Sawyer, E.B., Barker, P.D., Continued surprises in the cytochrome c biogenesis story (2012) Protein Cell, 3, pp. 405-409
  • Moore, G.R., Pettigrew, G.W., (1990) Cytochromes c. Evolutionary, Structural and Physicochemical Aspects, , Springer-Verlag, Berlin-Heidelberg-New York
  • Kulikov, A.V., Shilov, E.S., Mufazalov, I.A., Gogvadze, V., Nedospasov, S.A., Zhivotovsky, B., Cytochrome c: the Achilles' heel in apoptosis (2012) Cell. Mol. Life Sci., 69, pp. 1787-1797
  • Huttemann, M., Pecina, P., Rainbolt, M., Sanderson, T.H., Kagan, V.E., Samavati, L., Doan, J.W., Lee, I., The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis (2011) Mitochondrion, 11, pp. 369-381
  • Ow, Y.L.P., Green, D.R., Hao, Z., Mak, T.W., Cytochrome c: functions beyond respiration (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 532-542
  • Liu, J., Chakraborty, S., Hosseinzadeh, P., Yu, Y., Tian, S., Petrik, I., Bhagi, A., Lu, Y., Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers (2014) Chem. Rev., 114, pp. 4366-4369
  • Scott, R.A., Mauk, A.G., (1996) Cytochrome c: A Multidisciplinary Approach, , University Science Books, Sausalito, (Eds.)
  • Soares, C.M., Baptista, A.M., Pereira, M.M., Teixeira, M., Investigation of protonatable residues in Rhodothermus marinus caa<inf>3</inf> haem-copper oxygen reductase: comparison with Paracoccus denitrificans aa<inf>3</inf> haem-copper oxygen reductase (2004) J. Biol. Inorg. Chem., 9, pp. 124-134
  • Sigurdson, H., Namslauer, A., Pereira, M.M., Teixeira, M., Brzezinski, P., Ligand binding and the catalytic reaction of cytochrome caa<inf>3</inf> from the thermophilic bacterium Rhodothermus marinus (2001) Biochemistry, 40, pp. 10578-10585
  • Santana, M., Pereira, M.M., Elias, N.P., Soares, C.M., Teixeira, M., Gene cluster of Rhodothermus marinus high-potential iron-sulfur protein: oxygen oxidoreductase, a caa<inf>3</inf>-type oxidase belonging to the superfamily of heme-copper oxidases (2001) J. Bacteriol., 183, pp. 687-699
  • Pereira, M.M., Verkhovskaya, M.L., Teixeira, M., Verkhovsky, M.I., The caa<inf>3</inf> terminal oxidase of Rhodothermus marinus lacking the key glutamate of the D-channel is a proton pump (2000) Biochemistry, 39, pp. 6336-6340
  • Pereira, M.M., Santana, M., Soares, C.M., Mendes, J., Carita, J.N., Fernandes, A.S., Saraste, M., Teixeira, M., The caa<inf>3</inf> terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP : oxygen oxidoreductase lacking the key glutamate of the D-channel (1999) Biochim. Biophys. Acta Bioenerg., 1413, pp. 1-13
  • Pereira, M.M., Sousa, F.L., Teixeira, M., Nyquist, R.M., Heberle, J., A tyrosine residue deprotonates during oxygen reduction by the caa<inf>3</inf> reductase from Rhodothermus marinus (2006) FEBS Lett., 580, pp. 1350-1354
  • Srinivasan, V., Rajendran, C., Sousa, F.L., Melo, A.M.P., Saraiva, L.M., Pereira, M.M., Santana, M., Michel, H., Structure at 1.3 angstrom resolution of Rhodothermus marinus caa<inf>3</inf> cytochrome c domain (2005) J. Mol. Biol., 345, pp. 1047-1057
  • Verissimo, A.F., Sousa, F.L., Baptista, A.M., Teixeira, M., Pereira, M.M., Thermodynamic redox behavior of the heme centers in A-type heme-copper oxygen reductases: comparison between the two subfamilies (2008) Biophys. J., 95, pp. 4448-4455
  • Molinas, M.F., De Candia, A., Szajnman, S.H., Rodríguez, J.B., Martí, M., Pereira, M., Teixeira, M., Murgida, D.H., Electron transfer dynamics of Rhodothermus marinus caa<inf>3</inf> cytochrome c domains on biomimetic films (2011) Phys. Chem. Chem. Phys., 13, pp. 18088-18098
  • Stelter, M., Melo, A.M.P., Hreggvidsson, G.O., Hjorleifsdottir, S., Saraiva, L.M., Teixeira, M., Archer, M., Structure at 1.0 resolution of a high-potential iron-sulfur protein involved in the aerobic respiratory chain of Rhodothermus marinus (2010) J. Biol. Inorg. Chem., 15, pp. 303-313
  • Grochol, J., Dronov, R., Lisdat, F., Hildebrandt, P., Murgida, D.H., Electron transfer in SAM/Cytochrome/polyelectrolyte hybrid systems on electrodes: a time-resolved surface-enhanced resonance Raman study (2007) Langmuir, 23, pp. 11289-11294
  • Wisitruangsakul, N., Zebger, I., Ly, K.H., Murgida, D.H., Ekgasit, S., Hildebrandt, P., Redox-linked protein dynamics of cytochrome c probed by time-resolved surface enhanced infrared absorption spectroscopy (2008) Phys. Chem. Chem. Phys., 10, pp. 5276-5286
  • Kelly, S.M., Jess, T.J., Price, N.C., How to study proteins by circular dichroism (2005) Biochim. Biophys. Acta Protein Proteomics, 1751, pp. 119-139
  • Stelter, M., Melo, A.M.P., Pereira, M.M., Gomes, C.M., Hreggvidsson, G.O., Hjorleifsdottir, S., Saraiva, L.M., Archer, M., A novel type of monoheme cytochrome c: biochemical and structural characterization at 1.23Å resolution of Rhodothermus marinus cytochrome c (2008) Biochemistry, 47, pp. 11953-11963
  • Margoliash, E., Schejter, A., Cytochrome c (1966) Adv. Protein Chem., 21, pp. 113-286
  • Schejter, A., Eaton, W.A., Charge-transfer optical spectra, electron paramagnetic resonance, and redox potentials of cytochromes (1984) Biochemistry, 23, pp. 1081-1084
  • Latypov, R.F., Cheng, H., Roder, N.A., Zhang, J., Roder, H., Structural characterization of an equilibrium unfolding intermediate in cytochrome c (2006) J. Mol. Biol., 357, pp. 1009-1025
  • Oellerich, S., Wackerbarth, H., Hildebrandt, P., Spectroscopic characterization of nonnative conformational states of cytochrome c (2002) J. Phys. Chem. B, 106, pp. 6566-6580
  • Knapp, J.A., Pace, C.N., Guanidine hydrochloride and acid denaturation of horse, cow, and Candida krusei cytochromes c (1974) Biochemistry, 13, pp. 1289-1294
  • Yeh, S.R., Rousseau, D.L., Ligand exchange during unfolding of cytochrome c (1999) J. Biol. Chem., 274, pp. 17853-17859
  • Street, T.O., Bolen, D.W., Rose, G.D., A molecular mechanism for osmolyte-induced protein stability (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 13997-14002
  • Robinson, D.R., Jencks, W.P., The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds (1965) J. Am. Chem. Soc., 87, pp. 2462-2470
  • Courtenay, E.S., Capp, M.W., Saecker, R.M., Record, M.T., Structural stability of binding sites: consequences for binding affinity and allosteric effects (2000) Proteins Struct. Funct. Genet., 41, pp. 63-71
  • O'Brien, E.P., Dima, R.I., Brooks, B., Thirumalai, D., Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism (2007) J. Am. Chem. Soc., 129, pp. 7346-7353
  • Mason, P.E., Brady, J.W., Neilson, G.W., Dempsey, C.E., The interaction of guanidinium ions with a model peptide (2007) Biophys. J., 93, pp. L04-L06
  • Makhatadze, G.I., Privalov, P.L., Protein interactions with urea and guanidinium chloride; a calorimetric study (1992) J. Mol. Biol., 226, pp. 491-505
  • Tiffany, M.L., Krimm, S., Extended conformations of polypeptides and proteins in urea and guanidine hydrochloride (1973) Biopolymers, 12, pp. 575-587
  • Lim, W.K., Rosgen, J., Englander, S.W., Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 2595-2600
  • Dempsey, C.E., Piggot, T.J., Mason, P.E., Dissecting contributions to the denaturant sensitivities of proteins (2005) Biochemistry, 44, pp. 775-781
  • Smith, J.S., Scholtz, J.M., Guanidine hydrochloride unfolding of peptide helices: separation of denaturant and salt effects (1996) Biochemistry, 35, pp. 7292-7297
  • Alvarez-Paggi, D., Castro, M.A., Tortora, V., Castro, L., Radi, R., Murgida, D.H., Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c (2013) J. Am. Chem. Soc., 135, pp. 4389-4397
  • Murgida, D.H., Hildebrandt, P., Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance Raman spectroscopy (2004) Acc. Chem. Res., 37, pp. 854-861
  • Dopner, S., Hildebrandt, P., Resell, F.I., Mauk, A.G., Alkaline conformational transitions of ferricytochrome c studied by resonance Raman spectroscopy (1998) J. Am. Chem. Soc., 120, pp. 11246-11255
  • Petrovic, J., Clark, R.A., Yue, H., Waldeck, D.H., Bowden, E.F., Impact of surface immobilization and solution ionic strength on the formal potential of immobilized cytochrome c (2005) Langmuir, 21, pp. 6308-6316
  • Battistuzzi, G., Borsari, M., Sola, M., Francia, F., Redox thermodynamics of the native and alkaline forms of eukaryortic and bacterial class I cytochromes c (1997) Biochemistry, 36, pp. 16247-16258
  • Khoa Ly, H., Sezer, M., Wisitruangsakul, N., Feng, J.J., Kranich, A., Millo, D., Weidinger, I.M., Hildebrandt, P., Surface-enhanced vibrational spectroscopy for probing transient interactions of proteins with biomimetic interfaces: electric field effects on structure, dynamics and function of cytochrome c (2011) FEBS J., 278, pp. 1382-1390
  • Marcus, R.A., On theory of electron-transfer reactions. Unified treatment for homogeneous and electrode reactions (1965) J. Chem. Phys., 43, pp. 679-701
  • Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems (1979) J. Electroanal. Chem., 101, pp. 19-28
  • Murgida, D.H., Hildebrandt, P., Redox and redox-coupled processes of heme proteins and enzymes at electrochemical interfaces (2005) Phys. Chem. Chem. Phys., 7, pp. 3773-3784
  • Liu, B., Bard, A.J., Mirkin, M.V., Creager, S.E., Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy (2004) J. Am. Chem. Soc., 126, pp. 1485-1492
  • Krishtalik, L.I., The medium reorganization energy for the charge transfer reactions in proteins (2011) Biochim. Biophys. Acta Bioenerg., 1807, pp. 1444-1456
  • Mitra, D., Pelmenschikov, V., Guo, Y., Case, D.A., Wang, H., Dong, W., Tan, M.L., Cramer, S.P., Dynamics of the [4Fe-4S] cluster in Pyrococcus furiosus D14C ferredoxin via nuclear resonance vibrational and resonance raman spectroscopies, force field simulations, and density functional theory calculations (2011) Biochemistry, 50, pp. 5220-5235
  • Sigfridsson, E., Olsson, M.H.M., Ryde, U., Inner-sphere reorganization energy of iron-sulfur clusters studied with theoretical methods (2001) Inorg. Chem., 40, pp. 2509-2519
  • Kummerle, R., Gaillard, J., Kyritsis, P., Moulis, J.M., Intramolecular electron transfer in [4Fe-4S] proteins: estimates of the reorganization energy and electronic coupling in Chromatium vinosum ferredoxin (2001) J. Biol. Inorg. Chem., 6, pp. 446-451
  • Jensen, K.P., Iron-sulfur clusters: why iron? (2006) J. Inorg. Biochem., 100, pp. 1436-1439
  • Babini, E., Bertini, I., Borsari, M., Capozzi, F., Luchinat, C., Zhang, X., Moura, G.L.C., Gray, H.B., Bond-mediated electron tunneling in ruthenium-modified high-potential iron-sulfur protein (2000) J. Am. Chem. Soc., 122, pp. 4532-4533
  • Capdevila, D.A., Marmisollé, W.A., Tomasina, F., Demichelli, V., Portela, M., Radi, R., Murgida, D.H., Specific methionine oxidation of cytochrome c in complexes with zwitterionic lipids by hydrogen peroxide: potential implications for apoptosis (2015) Chem. Sci., 6, pp. 705-713
  • Feng, J.J., Hildebrandt, P., Murgida, D.H., Silver nanocoral structures on electrodes: a suitable platform for protein-based bioelectronic devices (2008) Langmuir, 24, pp. 1584-1586
  • Wang, B., Zhang, J.J., Pan, Z.Y., Tao, X.Q., Wang, H.S., A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film (2009) Biosens. Bioelectron., 24, pp. 1141-1145
  • Casalini, S., Battistuzzi, G., Borsari, M., Bortolotti, C.A., Di Rocco, G., Ranieri, A., Sola, M., Electron transfer properties and hydrogen peroxide electrocatalysis of cytochrome c variants at positions 67 and 80 (2010) J. Phys. Chem. B, 114, pp. 1698-1706
  • Águila, S., Vidal-Limón, A.M., Alderete, J.B., Sosa-Torres, M., Vázquez-Duhalt, R., Unusual activation during peroxidase reaction of a cytochrome c variant (2013) J. Mol. Catal. B Enzymatic, pp. 187-192
  • Battistuzzi, G., Bellei, M., Bortolotti, C.A., Sola, M., Redox properties of heme peroxidases (2010) Arch. Biochem. Biophys., 500, pp. 21-36
  • Ranieri, A., Bernini, F., Bortolotti, C.A., Castellini, E., The Met80Ala point mutation enhances the peroxidase activity of immobilized cytochrome c (2012) Catal. Sci. Technol., 2, pp. 2206-2210
  • Valderrama, B., Ayala, M., Vazquez-Duhalt, R., Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes (2002) Chem. Biol., 9, pp. 555-565
  • Wang, L., Waldeck, D.H., Denaturation of cytochrome c and its peroxidase activity when immobilized on SAM films (2008) J. Phys. Chem. C, 112, pp. 1351-1356

Citas:

---------- APA ----------
Molinas, M.F., Benavides, L., Castro, M.A. & Murgida, D.H. (2015) . Stability, redox parameters and electrocatalytic activity of a cytochrome domain from a new subfamily. Bioelectrochemistry, 105, 25-33.
http://dx.doi.org/10.1016/j.bioelechem.2015.05.005
---------- CHICAGO ----------
Molinas, M.F., Benavides, L., Castro, M.A., Murgida, D.H. "Stability, redox parameters and electrocatalytic activity of a cytochrome domain from a new subfamily" . Bioelectrochemistry 105 (2015) : 25-33.
http://dx.doi.org/10.1016/j.bioelechem.2015.05.005
---------- MLA ----------
Molinas, M.F., Benavides, L., Castro, M.A., Murgida, D.H. "Stability, redox parameters and electrocatalytic activity of a cytochrome domain from a new subfamily" . Bioelectrochemistry, vol. 105, 2015, pp. 25-33.
http://dx.doi.org/10.1016/j.bioelechem.2015.05.005
---------- VANCOUVER ----------
Molinas, M.F., Benavides, L., Castro, M.A., Murgida, D.H. Stability, redox parameters and electrocatalytic activity of a cytochrome domain from a new subfamily. Bioelectrochemistry. 2015;105:25-33.
http://dx.doi.org/10.1016/j.bioelechem.2015.05.005