Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits. © FEMS 2016.

Registro:

Documento: Artículo
Título:Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening
Autor:Pautasso, C.; Reca, S.; Chatfield-Reed, K.; Chua, G.; Galello, F.; Portela, P.; Zaremberg, V.; Rossi, S.
Filiación:Departamento de Química Biológica, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
Palabras clave:Bcy1; PKA; Saccharomyces cerevisiae; Tpks; Transcription regulation; choline; cyclic AMP dependent protein kinase; green fluorescent protein; holoenzyme; inositol; phosphate; Bcy1 protein, S cerevisiae; cyclic AMP dependent protein kinase catalytic subunit; Saccharomyces cerevisiae protein; Article; BCY1 gene; enzyme active site; enzyme phosphorylation; enzyme subunit; fungal gene; gene ontology; lipid metabolism; nonhuman; phosphate metabolism; promoter region; protein expression; quantitative analysis; Saccharomyces cerevisiae; signal transduction; TPK1 gene; TPK2 gene; TPK3 gene; transcription regulation; enzymology; gene expression profiling; gene expression regulation; gene fusion; genetic transcription; genetics; metabolism; reporter gene; Saccharomyces cerevisiae; Artificial Gene Fusion; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits; Gene Expression Profiling; Gene Expression Regulation, Fungal; Genes, Reporter; Promoter Regions, Genetic; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Transcription, Genetic
Año:2016
Volumen:16
Número:5
DOI: http://dx.doi.org/10.1093/femsyr/fow046
Título revista:FEMS Yeast Research
Título revista abreviado:FEMS Yeast Res.
ISSN:15671356
CODEN:FYREA
CAS:choline, 123-41-1, 13232-47-8, 1927-06-6, 4858-96-2, 62-49-7, 67-48-1; cyclic AMP dependent protein kinase; inositol, 55608-27-0, 6917-35-7, 87-89-8; phosphate, 14066-19-4, 14265-44-2; Bcy1 protein, S cerevisiae; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits; Saccharomyces cerevisiae Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15671356_v16_n5_p_Pautasso

Referencias:

  • Alcázar-Román, A.R., Wente, S.R., Inositol polyphosphates: a new frontier for regulating gene expression (2008) Chromosoma, 117, pp. 1-13
  • Alvarez-Vasquez, F., Sims, K.J., Cowart, L.A., Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae (2005) Nature, 433, pp. 425-430
  • Ambroziak, J., Henry, S.A., INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter (1994) J Biol Chem, 269, pp. 15344-15349
  • Aun, A., Tamm, T., Sedman, J., Dysfunctional mitochondria modulate cAMP-PKA signaling and filamentous and invasive growth of Saccharomyces cerevisiae (2013) Genetics, 193, pp. 467-481
  • Banfic, H., Bedalov, A., York, J.D., Inositol pyrophosphates modulate S phase progression after pheromone-induced arrest in saccharomyces cerevisiae (2013) J Biol Chem, 288, pp. 1717-1725
  • Beebe, S.J., Oyen, O., Sandberg, M., Molecular cloning of a tissue-specific protein kinase (C gamma) from human testis-representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase (1990) Mol Endocrinol, 4, pp. 465-475
  • Bregman, A., Avraham-Kelbert, M., Barkai, O., Promoter elements regulate cytoplasmic mRNA decay (2011) Cell, 147, pp. 1473-1483
  • Cadd, G., Mcknight, G.S., Distinct patterns of CAMP-dependent gene expression in mouse brain (1989) Neuron, 3, pp. 71-79
  • Carman, G.M., Han, G.-S., Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae (2011) Annu Rev Biochem, 80, pp. 859-883
  • Carman, G.M., Henry, S.A., Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae (2007) J Biol Chem, 282, pp. 37293-37297
  • Carman, G.M., Kersting, M.C., Phospholipid synthesis in yeast: regulation by phosphorylation (2004) Biochem Cell Biol, 82, pp. 62-70
  • Colombo, S., Ma, P., Cauwenberg, L., Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae (1998) EMBO J, 17, pp. 3326-3341
  • Cumming, G., Fidler, F., Vaux, D.L., Error bars in experimental biology (2007) J Cell Biol, 177, pp. 7-11
  • Dechant, R., Binda, M., Lee, S.S., Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase (2010) EMBO J, 29, pp. 2515-2526
  • Divecha, N., Irvine, R.F., Phospholipid signaling review (1995) Cell, 80, pp. 269-278
  • Engelberg, D., Perlman, R., Levitzki, A., Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in meta-zoans: state of the art after 25 years (2014) Cell Signal, 26, pp. 2865-2878
  • Feliciello, A., Gottesman, M.E., Avvedimento, E.V., cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases (2005) Cell Signal, 17, pp. 279-287
  • Filteau, M., Diss, G., Torres-Quiroz, F., Systematic identification of signal integration by protein kinase A (2015) P Natl Acad Sci USA, 112, pp. 4501-4506
  • Galdieri, L., Chang, J., Mehrotra, S., Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global his-tone acetylation (2013) J Biol Chem, 288, pp. 27986-27998
  • Galello, F., Moreno, S., Rossi, S., Interacting proteins of protein kinase A regulatory subunit in Saccharomyces cerevisiae (2014) JProteomics, 109, pp. 261-275
  • Gardenour, K.R., Levy, J., Lopes, J.M., Identification of novel dominant INO2c mutants with an Opiphenotype (2004) Mol Microbiol, 52, pp. 1271-1280
  • Griffioen, G., Thevelein, J.M., Molecular mechanisms controlling the localisation of protein kinase A (2002) Curr Genet, 41, pp. 199-207
  • Haimovich, G., Choder, M., Singer, R.H., The fate of the messenger is pre-determined: a new model for regulation of gene expression (2013) Biochim Biophys Acta, 1829, pp. 643-653
  • He, Y., Swaminathan, A., Lopes, J.M., Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins (2012) Mol Microbiol, 83, pp. 395-407
  • Heyken, W.-T., Repenning, A., Kumme, J., Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor (2005) Mol Microbiol, 56, pp. 696-707
  • Honigberg, S.M., Purnapatre, K., Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast (2003) JCell Sci, 116, pp. 2137-2147
  • Houge, G., Vintermyr, O.K., Døskeland, S.O., The expression of cAMP-dependent protein kinase subunits in primary rat hepatocyte cultures. Cyclic AMP down-regulates its own effector system by decreasing the amount of catalytic subunit and increasing the mRNAs for the inhibitory (R) subunits of cAMP-d (1990) Mol Endocrinol, 4, pp. 481-488
  • Hougel, G., Differential expression of cAMP-kinase subunits is correlated with growth in rat mammary carcinomas and uterus (1992), 1029, pp. 1022-1029; Hu, Z., Killion, P.J., Iyer, V.R., Genetic reconstruction of a functional transcriptional regulatory network (2007) Nat Genet, 39, pp. 683-687
  • Huang, K., Ferrin-O'Connell, I., Zhang, W., Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway (2007) Mol Cell, 28, pp. 614-623
  • Jahnsensg, T., Lohmannlf, S.M., Walterlf, U., Purification and characterization of hormone-regulated isoforms of the regulatory subunit of type I1 CAMP-dependent protein kinase from rat ovaries (1985) J Biol Chem, 260, pp. 15980-15987
  • Jani, N.M., Lopes, J.M., Transcription regulation of the Saccharomyces cerevisiae PIS1 gene by inositol and the pleiotropic regulator, Ume6p (2008) Mol Microbiol, 70, pp. 1529-1539
  • Jesch, S.A., Zhao, X., Wells, M.T., Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast (2005) J Biol Chem, 280, pp. 9106-9118
  • Kainth, P., Andrews, B., Illuminating transcription pathways using fluorescent reporter genes and yeast functional genomics (2010) Transcription, 1, pp. 76-80
  • Kainth, P., Sassi, H.E., Peña-Castillo, L., Comprehensive genetic analysis of transcription factor pathways using a dual reporter gene system in budding yeast (2009) Methods, 48, pp. 258-264
  • Kim, H.Y., Lee, S.B., Kang, H.S., Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11 (2014) Biochem Bioph Res Co, 449, pp. 202-207
  • Klig, L.S., Henry, S.A., Isolation of the yeast INO1 gene: located on an autonomously replicating plasmid, the gene is fully regulated (1984) P Natl Acad Sci USA, 81, pp. 3816-3820
  • Knutsen, H.K., Taskén, K.A., Eskild, W., Adenosine 3', 5'-monophosphate-dependent stabilization of messenger ribonucleic acids (mRNAs) for protein kinase-A (PKA) subunits in rat Sertoli cells: rapid degradation of mRNAs for PKA subunits is dependent on ongoing RNA and protein synthesis (1991) Endocrinology, 129, pp. 2496-2502
  • Komeili, A., O'Shea, E.K., Roles of phosphorylation sites in regulating activity of the transcription factor Pho4 (1999) Science, 284, pp. 977-980
  • Landmark, B.F., Oyen, O., Skålhegg, B.S., Cellular location and age-dependent changes of the regulatory subunits of cAMP-dependent protein kinase in rat testis (1993) J Reprod Fertil, 99, pp. 323-334
  • Lee, Y.-S., Huang, K., Quiocho, F.A., Molecular basis of cyclinCDK-CKI regulation by reversible binding of an inositol pyrophosphate (2008) Nat Chem Biol, 4, pp. 25-32
  • Liu, H., Styles, C.A., Fink, G.R., Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth (1996) Genetics, 144, pp. 967-978
  • Loewen, C.J.R., Gaspar, M.L., Jesch, S.A., Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid (2004) Science, 304, pp. 1644-1647
  • Loewen, C.J.R., Roy, A., Levine, T.P., A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP (2003) EMBO J, 22, pp. 2025-2035
  • Magbanua, J.P., Ogawa, N., Harashima, S., The transcriptional activators of the PHO regulon, Pho4p and Pho2p, interact directly with each other and with components of the basal transcription machinery in Saccharomyces cerevisiae (1997) J Biochem, 121, pp. 1182-1189
  • Medina, D.A., Jordán-Pla, A., Millán-Zambrano, G., Cytoplasmic 5'-3' exonuclease Xrn1p is also a genome-wide transcription factor in yeast (2014) Front Genet, 5, p. 1
  • Miller, J.H., (1972) Experiments in Molecular Genetics, , Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press
  • Monserrate, J.P., York, J.D., Inositol phosphate synthesis and the nuclear processes they affect (2010) Curr Opin Cell Biol, 22, pp. 365-373
  • Mouillon, J.-M., Persson, B.L., New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae (2006) FEMS Yeast Res, 6, pp. 171-176
  • Murray, M., Greenberg, M.L., Regulation of inositol monophosphatase in Saccharomyces cerevisiae (1997) Mol Microbiol, 25, pp. 541-546
  • Myers, A.M., Tzagoloff, A., Kinney, D.M., Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions (1986) Gene, 45, pp. 299-310
  • Odom, A.R., Stahlberg, A., Wente, S.R., A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control (2000) Science, 287, pp. 2026-2029
  • Oshiro, J., Rangaswamy, S., Chen, X., Regulation of the DPP1-encoded diacylglycerol pyrophosphate (DGPP) phosphatase by inositol and growth phase. Inhibition of DGPP phosphatase activity by CDP-diacylglyceron and activation of phosphatidylserine synthase activity by DGPP (2000) J Biol Chem, 275, pp. 40887-40896
  • Pariset, C., Feinberg, J., Dacheux, J.L., Differential expression and subcellular localization for subunits of cAMP-dependent protein kinase during ram spermato-genesis (1989) J Cell Biol, 109, pp. 1195-1205
  • Pautasso, C., Rossi, S., Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: Autoregulatory role of the kinase A activity (2014) Biochim Biophys Acta, 1839, pp. 275-287
  • Reinton, N., Haugen, T.B., Ørstavik, S., The gene encoding the C g catalytic subunit of cAMP-dependent protein kinase is a transcribed retroposon (1998), 297, pp. 290-297; Rupwate, S.D., Rupwate, P.S., Rajasekharan, R., Regulation of lipid biosynthesis by phosphatidylinositol-specific phospholipase C through the transcriptional repression of upstream activating sequence inositol containing genes (2012) FEBS Lett, 586, pp. 1555-1560
  • Santiago, T.C., Mamoun, C., Ben. Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p (2003) J Biol Chem, 278, pp. 38723-38730
  • Shao, D., Creasy, C.L., Bergman, L.W., A cysteine residue in helixII of the bHLH domain is essential for homodimerization of the yeast transcription factor Pho4p (1998) Nucleic Acids Res, 26, pp. 710-714
  • Skålhegg, B.S., Taskén, K., Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of the subunitis of PKA (1997) Front Biosci, 2, pp. d331-d342
  • Smets, B., Ghillebert, R., Snijder, P., Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae (2010) Curr Genet, 56, pp. 1-32
  • Sreenivas, A., Carman, G.M., Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase A (2003) J Biol Chem, 278, pp. 20673-20680
  • Taskén, K.A., Knutsen, H.K., Attramadal, H., Different mechanisms are involved in cAMP-mediated induction of mRNAs for subunits of cAMP-dependent protein kinases (1991) Mol Endocrinol, 5, pp. 21-28
  • Thevelein, J.M., Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control (1991) Mol Microbiol, 5, pp. 1301-1307
  • Thevelein, J.M., Bonini, B.M., Castermans, D., Novel mechanisms in nutrient activation of the yeast protein kinase A pathway (2008) Acta Microbiol Imm H, 55, pp. 75-89
  • Thevelein, J.M., Winde, J.H.D., MicroReview Novel sensing mechanisms and targets for the cAMP ± protein kinase A pathway in the yeast Saccharomyces cerevisiae (1999), 33, pp. 904-918; Vandamme, J., Castermans, D., Thevelein, J.M., Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation (2012) Cell Signal, 24, pp. 1610-1618

Citas:

---------- APA ----------
Pautasso, C., Reca, S., Chatfield-Reed, K., Chua, G., Galello, F., Portela, P., Zaremberg, V.,..., Rossi, S. (2016) . Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening. FEMS Yeast Research, 16(5).
http://dx.doi.org/10.1093/femsyr/fow046
---------- CHICAGO ----------
Pautasso, C., Reca, S., Chatfield-Reed, K., Chua, G., Galello, F., Portela, P., et al. "Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening" . FEMS Yeast Research 16, no. 5 (2016).
http://dx.doi.org/10.1093/femsyr/fow046
---------- MLA ----------
Pautasso, C., Reca, S., Chatfield-Reed, K., Chua, G., Galello, F., Portela, P., et al. "Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening" . FEMS Yeast Research, vol. 16, no. 5, 2016.
http://dx.doi.org/10.1093/femsyr/fow046
---------- VANCOUVER ----------
Pautasso, C., Reca, S., Chatfield-Reed, K., Chua, G., Galello, F., Portela, P., et al. Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening. FEMS Yeast Res. 2016;16(5).
http://dx.doi.org/10.1093/femsyr/fow046