Abstract:
Poly(lactic acid) (PLA) nanocomposite films reinforced with acetylated bacterial cellulose nanoribbons were prepared by solvent casting. Acetylation of bacterial cellulose (BC) was performed by an innovative and sustainable direct solvent-free route catalyzed by citric acid. The effect of derivatization and its extent on the morphological, optical, thermal and mechanical properties of the nanocomposites was analyzed. Data collected from the above studies showed that acetylation of BC nanoribbons clearly improved the nanofibers dispersion in the PLA matrix with respect to unmodified BC, which in turn resulted in increased transparency and mechanical properties of the nanocomposites produced. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
Registro:
Documento: |
Artículo
|
Título: | Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route |
Autor: | Ávila Ramírez, J.A.; Cerrutti, P.; Bernal, C.; Errea, M.I.; Foresti, M.L. |
Filiación: | Centro de Ingeniería del Medio Ambiente (CIMA), Instituto Tecnológico de Buenos Aires (ITBA), Av. Eduardo Madero 399, Buenos Aires, CP 1106ACD, Argentina Grupo de Biotecnología y Biosíntesis, Facultad de Ingeniería, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Las Heras 2214, Buenos Aires, CP 1127AAR, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina Grupo de Propiedades Mecánicas y Fractura, Facultad de Ingeniería, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Las Heras 2214, Buenos Aires, CP 1127AAR, Argentina
|
Palabras clave: | Acetylation; Bacterial cellulose; Citric acid; Nanocomposites; Poly(lactic acid); Acetylation; Catalysis; Cellulose; Cellulose films; Citric acid; Lactic acid; Mechanical properties; Nanocomposites; Nanoribbons; Bacterial cellulose; Derivatizations; Direct solvents; Poly lactic acid; Polylactic acids; Solvent casting; Thermal and mechanical properties; Nanocomposite films; Bacteria (microorganisms) |
Año: | 2019
|
Volumen: | 27
|
Número: | 3
|
Página de inicio: | 510
|
Página de fin: | 520
|
DOI: |
http://dx.doi.org/10.1007/s10924-019-01367-5 |
Título revista: | Journal of Polymers and the Environment
|
Título revista abreviado: | J. Polym. Environ.
|
ISSN: | 15662543
|
CODEN: | JPENF
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15662543_v27_n3_p510_AvilaRamirez |
Referencias:
- Henton, D.E., Gruber, P., Lunt, J., Randall, J., Polylactic acid technology (2005) Natural fibers, biopolymers, and biocomposites, pp. 527-577. , Mohanty AK, Misra M, Drzal LT, (eds), CRC Press, New York
- Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I., (2006) Compos Sci Technol, 66, p. 2776
- Sanchez-García, M., Lagaron, J., (2010) Cellulose, 17, p. 987
- Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J.M., Torre, L., (2014) Eur Polym J, 56, p. 77
- Hossain, K.M.Z., Ahmed, I., Parsons, A.J., Scotchford, C.A., Walker, G.S., Thielemans, W., Rudd, C.D., (2012) J Mater Sci, 47, p. 2675
- Jonoobi, M., Harun, J., Mathew, A.P., Oksman, K., (2010) Compos Sci Technol, 70, p. 1742
- Kowalczyk, M., Piorkowska, E., Kulpinski, P., Pracella, M., (2011) Compos A, 42, p. 1509
- Wang, Y., Drzal, L.T., (2012) Appl Mater Interfaces, 4, p. 5076
- Baheti, V., Militky, J., Mishra, R., Behera, B., (2013) Text Sci Eng, 3, p. 130
- Ghasemi, S., Behrooz, R., Ghasemi, I., (2017) J Bionanoscience, 11, p. 554
- Kim, Y., Jung, R., Kim, H.S., Jin, H.-Y., (2009) Curr Appl Phys, 9, p. 569
- Luddee, M., Pivsa-Art, S., Sirisansaneeyakul, S., Pechyen, C., (2014) Energy Proc, 56, p. 211
- Quero, F., Nogi, M., Yano, H., Abdulsalami, K., Holmes, S., Sakakini, B., Eichhorn, J., (2010) J Appl Mater Interfaces, 2, p. 321
- Panaitescu, D.M., Frone, A.N., Chiulan, I., Gabor, R.A., Spataru, I.C., Casarica, A., (2017) BioResources, 12, p. 662
- Lin, N., Huang, J., Chang, P.R., Feng, J., Yu, J., (2011) Carbohydr Polym, 83, p. 1834
- Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L.A., Kenny, J.M., (2012) Polym Degrad Stab, 97, p. 2027
- Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Kenny, J.M., (2012) Carbohydr Polym, 90, p. 948
- Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L.A., Kenny, J.M., (2012) Carbohydr Polym, 87, p. 1596
- Robles, E., Urrusola, I., Labidi, J., Serrano, L., (2015) Ind Crops Prod, 71, p. 44
- Spinella, S., Lo Re, G., Liu, B., Dorgan, J., Habibi, Y., Leclére, P., Raquez, J.-M., Gross, R.A., (2015) Polym J, 65, p. 9
- Trifol, J., Plackett, D., Sillard, C., Hassager, O., Daugaard, A.E., Bras, J., Szabo, P., (2016) J Appl Polym Sci, 133, p. 43257
- Xu, C., Lv, Q., Wu, D., Wang, Z., (2017) Cellulose, 24, p. 2163
- Frone, A.N., Berlioz, S., Chailan, J.-F., Panaitescu, D., (2013) Carbohydr Polym, 91, p. 377
- Jonoobi, M., Mathew, A.P., Abdi, M.M., Makinejad, M.D., Oksman, K., (2012) J Polym Environ, 20, p. 991
- Habibi, Y., Aouadi, S., Raquez, J., Dubois, P., (2013) Cellulose, 20, p. 2877
- Song, Z., Xiao, H., Zhao, Y., (2014) Carbohydr Polym, 111, p. 442
- Ambrosio-Martın, J., Fabra, M.J., Lopez-Rubio, A., Lagaron, J.M., (2015) Cellulose, 22, p. 1201
- Lee, K.-Y., Blaker, J.J., Bismarck, A., (2009) Compos Sci Technol, 69, p. 2724
- Quero, F., Eichhorn, J., Nogi, M., Lee, K.-Y., Bismarck, A., (2012) J Polym Environ, 20, p. 916
- Tomé, L.C., Pinto, R.J.B., Trovatti, E., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Gandini, I.A., (2011) Green Chem, 13, p. 419
- Zhang, X., Li, W., Ye, B., Lin, Z., Rong, J., (2013) J Thermoplast Compos, 26, p. 346
- Tingaut, P., Zimmermann, T., Lopez-Suevos, F., (2010) Biomacromolecules, 11, p. 454
- Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A.A., Asl, A.K., (2015) Food Packag Shelf Life, 5, p. 21
- Missoum, K., Belgacem, M.N., Bra, J., (2013) Materials, 6, p. 1745
- Czaja, W.K., Young, D.J., Kawecki, M., Brown, R.M., (2007) Biomacromolecules, 8, p. 1
- Corujo, V.F., Cerrutti, P., Foresti, M.L., Vázquez, A., Production of bacterial nanocellulose from non-conventional fermentation media (2016) Multifunctional polymeric nanocomposites based on cellulosic reinforcements, pp. 39-59. , Puglia D, Fortunati E, Kenny JM, (eds), Elsevier Inc, Amsterdam
- Lee, K.-Y., Bismarck, A., Bacterial nanocellulose as reinforcement for polymer matrices (2016) Bacterial nanocellulose from biotechnology to bio-economy, pp. 109-122. , Gama M, Dourado F, Bielecki S, (eds), Elsevier, Chenai
- Panaitescu, D.M., Frone, A.N., Chiulan, I., (2016) Ind Crops Prod, 93, p. 251
- Agustin, M.B., Nakatsubo, F., Yano, H., (2016) Cellulose, 23, p. 451
- Berlioz, S., Molina-Boisseau, S., Nishiyama, Y., Heux, L., (2009) Biomacromolecules, 10, p. 2144
- Blaker, J.J., Walters, K.-Y.M., Drouet, M., Bismarck, A., (2014) React Funct Polym, 85, p. 185
- Cunha, A.G., Zhou, Q., Larsson, P.T., Berglund, L.A., (2014) Cellulose, 21, p. 2773
- Suetsugu, M., Kotera, M., Nishino, M.T., Cellulosic nanocomposite prepared by acetylation of bacterial cellulose using supercritical carbon dioxide (2009) 17Th International Conference on Composite Materials, 2009, , Edinburgh, UK
- Gonçalves, S., Padrão, J., Rodrigues, I.P., Silva, J.P., Sencadas, V., Lanceros-Mendez, S., Girão, H., Rodrigues, L.R., (2015) Biomacromolecules, 16, p. 1341
- Hu, W., Chen, S., Xu, Q., Wang, H., (2011) Carbohydr Polym, 83, p. 1575
- Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H., (2007) Biomacromolecules, 8, p. 1973
- Kim, D., Nishiyama, Y., Kuga, S., (2002) Cellulose, 9, p. 361
- Lee, K.-Y., Quero, F., Blaker, J.J., Hill, C.A.S., Eichhorn, S.J., Bismarck, A., (2011) Cellulose, 18, p. 595
- Lee, K.-Y., Bismarck, A., (2012) Cellulose, 19, p. 891
- Tomé, L.C., Brandão, L., Mendes, A.M., Silvestre, A.J.D., Neto, C.P., Gandini, A., Freire, C.S.R., Marrucho, I.M., (2010) Cellulose, 17, p. 1203
- Tomé, L.C., Freire, M.G., Rebelo, L.P.N., Silvestre, A.J.D., Neto, C.P., Marrucho, I.M., Freire, C.S.R., (2011) Green Chem, 13, p. 2464
- Yamamoto, H., Horii, F., Hirai, A., (2006) Cellulose, 13, p. 327
- Ávila Ramírez, J.A., Juan Suriano, C., Cerrutti, P., Foresti, M.L., (2014) Carbohydr Polym, 114, p. 416
- Ávila Ramírez, J.A., Gómez Hoyos, C., Arroyo, S., Cerrutti, P., Foresti, M.L., Curr, M.L., (2016) Organocatal, 3, p. 161
- Ávila Ramírez, J.A., Gómez Hoyos, C., Arroyo, S., Cerrutti, P., Foresti, M.L., (2016) Carbohydr Polym, 153, p. 686
- Domínguez De María, P., (2010) Chemcatchem, 2, p. 487
- Cerrutti, P., Roldán, P., Martínez García, R., Galvagno, M.A., Vázquez, A., Foresti, M.L., (2016) J Appl Polym Sci, 133, p. 43109
- Hestrin, S., Schramm, M., (1954) Biochem J, 58, p. 345
- Ilharco, L.M., Gracia, R.R., da Silva, J.L., Ferreira, L.F.V., (1997) Langmuir, 13, p. 4126
- Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M., (1959) Text Res J, 29, p. 786
- Turner, J.F., Riga, A., Connor, A., Zhang, J., Collis, J., (2004) J Therm Anal Calorim, 75, p. 257
- Haigler, C.H., (1982) Read, Alteration of Cellulose Assembly in Acetobacter Xylinum by Fluorescent Brightening Agents, Direct Dyes and Cellulose Derivatives, , University of North Carolina at Chapel Hill
- Hirai, A., Tsuji, M., Yamamoto, H., Horii, F., (1998) Cellulose, 5, p. 201
- Gan, K., Nechwatal, A., Frankenfeld, K., Schlufter, K., (2012) J Compos Mater, 2, p. 97
- Dai, X., Cao, Y., Wang, X., (2016) RSC Adv, 6, p. 71461
- Teixeira, E.M., de Campos, A., Marconcini, J.M., Bondancia, T.J., Wood, D., Klamczynski, A., Mattoso, L.H.C., Glenn, G.M., (2014) RSC Adv, 4, p. 6616
- Young, R.J., Lovell, P.A., (1991) Introduction to polymers, Chap. 5, , 2, Chapman and Hall, London
- Pérez, E., Famá, L., Pardo, S.G., Abad, M.J., Bernal, C., (2012) Composites B, 43, p. 2795
Citas:
---------- APA ----------
Ávila Ramírez, J.A., Cerrutti, P., Bernal, C., Errea, M.I. & Foresti, M.L.
(2019)
. Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route. Journal of Polymers and the Environment, 27(3), 510-520.
http://dx.doi.org/10.1007/s10924-019-01367-5---------- CHICAGO ----------
Ávila Ramírez, J.A., Cerrutti, P., Bernal, C., Errea, M.I., Foresti, M.L.
"Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route"
. Journal of Polymers and the Environment 27, no. 3
(2019) : 510-520.
http://dx.doi.org/10.1007/s10924-019-01367-5---------- MLA ----------
Ávila Ramírez, J.A., Cerrutti, P., Bernal, C., Errea, M.I., Foresti, M.L.
"Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route"
. Journal of Polymers and the Environment, vol. 27, no. 3, 2019, pp. 510-520.
http://dx.doi.org/10.1007/s10924-019-01367-5---------- VANCOUVER ----------
Ávila Ramírez, J.A., Cerrutti, P., Bernal, C., Errea, M.I., Foresti, M.L. Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route. J. Polym. Environ. 2019;27(3):510-520.
http://dx.doi.org/10.1007/s10924-019-01367-5