Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Poly(lactic acid) (PLA) nanocomposite films reinforced with acetylated bacterial cellulose nanoribbons were prepared by solvent casting. Acetylation of bacterial cellulose (BC) was performed by an innovative and sustainable direct solvent-free route catalyzed by citric acid. The effect of derivatization and its extent on the morphological, optical, thermal and mechanical properties of the nanocomposites was analyzed. Data collected from the above studies showed that acetylation of BC nanoribbons clearly improved the nanofibers dispersion in the PLA matrix with respect to unmodified BC, which in turn resulted in increased transparency and mechanical properties of the nanocomposites produced. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.

Registro:

Documento: Artículo
Título:Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route
Autor:Ávila Ramírez, J.A.; Cerrutti, P.; Bernal, C.; Errea, M.I.; Foresti, M.L.
Filiación:Centro de Ingeniería del Medio Ambiente (CIMA), Instituto Tecnológico de Buenos Aires (ITBA), Av. Eduardo Madero 399, Buenos Aires, CP 1106ACD, Argentina
Grupo de Biotecnología y Biosíntesis, Facultad de Ingeniería, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Las Heras 2214, Buenos Aires, CP 1127AAR, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
Grupo de Propiedades Mecánicas y Fractura, Facultad de Ingeniería, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Las Heras 2214, Buenos Aires, CP 1127AAR, Argentina
Palabras clave:Acetylation; Bacterial cellulose; Citric acid; Nanocomposites; Poly(lactic acid); Acetylation; Catalysis; Cellulose; Cellulose films; Citric acid; Lactic acid; Mechanical properties; Nanocomposites; Nanoribbons; Bacterial cellulose; Derivatizations; Direct solvents; Poly lactic acid; Polylactic acids; Solvent casting; Thermal and mechanical properties; Nanocomposite films; Bacteria (microorganisms)
Año:2019
Volumen:27
Número:3
Página de inicio:510
Página de fin:520
DOI: http://dx.doi.org/10.1007/s10924-019-01367-5
Título revista:Journal of Polymers and the Environment
Título revista abreviado:J. Polym. Environ.
ISSN:15662543
CODEN:JPENF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15662543_v27_n3_p510_AvilaRamirez

Referencias:

  • Henton, D.E., Gruber, P., Lunt, J., Randall, J., Polylactic acid technology (2005) Natural fibers, biopolymers, and biocomposites, pp. 527-577. , Mohanty AK, Misra M, Drzal LT, (eds), CRC Press, New York
  • Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I., (2006) Compos Sci Technol, 66, p. 2776
  • Sanchez-García, M., Lagaron, J., (2010) Cellulose, 17, p. 987
  • Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J.M., Torre, L., (2014) Eur Polym J, 56, p. 77
  • Hossain, K.M.Z., Ahmed, I., Parsons, A.J., Scotchford, C.A., Walker, G.S., Thielemans, W., Rudd, C.D., (2012) J Mater Sci, 47, p. 2675
  • Jonoobi, M., Harun, J., Mathew, A.P., Oksman, K., (2010) Compos Sci Technol, 70, p. 1742
  • Kowalczyk, M., Piorkowska, E., Kulpinski, P., Pracella, M., (2011) Compos A, 42, p. 1509
  • Wang, Y., Drzal, L.T., (2012) Appl Mater Interfaces, 4, p. 5076
  • Baheti, V., Militky, J., Mishra, R., Behera, B., (2013) Text Sci Eng, 3, p. 130
  • Ghasemi, S., Behrooz, R., Ghasemi, I., (2017) J Bionanoscience, 11, p. 554
  • Kim, Y., Jung, R., Kim, H.S., Jin, H.-Y., (2009) Curr Appl Phys, 9, p. 569
  • Luddee, M., Pivsa-Art, S., Sirisansaneeyakul, S., Pechyen, C., (2014) Energy Proc, 56, p. 211
  • Quero, F., Nogi, M., Yano, H., Abdulsalami, K., Holmes, S., Sakakini, B., Eichhorn, J., (2010) J Appl Mater Interfaces, 2, p. 321
  • Panaitescu, D.M., Frone, A.N., Chiulan, I., Gabor, R.A., Spataru, I.C., Casarica, A., (2017) BioResources, 12, p. 662
  • Lin, N., Huang, J., Chang, P.R., Feng, J., Yu, J., (2011) Carbohydr Polym, 83, p. 1834
  • Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L.A., Kenny, J.M., (2012) Polym Degrad Stab, 97, p. 2027
  • Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Kenny, J.M., (2012) Carbohydr Polym, 90, p. 948
  • Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L.A., Kenny, J.M., (2012) Carbohydr Polym, 87, p. 1596
  • Robles, E., Urrusola, I., Labidi, J., Serrano, L., (2015) Ind Crops Prod, 71, p. 44
  • Spinella, S., Lo Re, G., Liu, B., Dorgan, J., Habibi, Y., Leclére, P., Raquez, J.-M., Gross, R.A., (2015) Polym J, 65, p. 9
  • Trifol, J., Plackett, D., Sillard, C., Hassager, O., Daugaard, A.E., Bras, J., Szabo, P., (2016) J Appl Polym Sci, 133, p. 43257
  • Xu, C., Lv, Q., Wu, D., Wang, Z., (2017) Cellulose, 24, p. 2163
  • Frone, A.N., Berlioz, S., Chailan, J.-F., Panaitescu, D., (2013) Carbohydr Polym, 91, p. 377
  • Jonoobi, M., Mathew, A.P., Abdi, M.M., Makinejad, M.D., Oksman, K., (2012) J Polym Environ, 20, p. 991
  • Habibi, Y., Aouadi, S., Raquez, J., Dubois, P., (2013) Cellulose, 20, p. 2877
  • Song, Z., Xiao, H., Zhao, Y., (2014) Carbohydr Polym, 111, p. 442
  • Ambrosio-Martın, J., Fabra, M.J., Lopez-Rubio, A., Lagaron, J.M., (2015) Cellulose, 22, p. 1201
  • Lee, K.-Y., Blaker, J.J., Bismarck, A., (2009) Compos Sci Technol, 69, p. 2724
  • Quero, F., Eichhorn, J., Nogi, M., Lee, K.-Y., Bismarck, A., (2012) J Polym Environ, 20, p. 916
  • Tomé, L.C., Pinto, R.J.B., Trovatti, E., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Gandini, I.A., (2011) Green Chem, 13, p. 419
  • Zhang, X., Li, W., Ye, B., Lin, Z., Rong, J., (2013) ‎J Thermoplast Compos, 26, p. 346
  • Tingaut, P., Zimmermann, T., Lopez-Suevos, F., (2010) Biomacromolecules, 11, p. 454
  • Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A.A., Asl, A.K., (2015) Food Packag Shelf Life, 5, p. 21
  • Missoum, K., Belgacem, M.N., Bra, J., (2013) Materials, 6, p. 1745
  • Czaja, W.K., Young, D.J., Kawecki, M., Brown, R.M., (2007) Biomacromolecules, 8, p. 1
  • Corujo, V.F., Cerrutti, P., Foresti, M.L., Vázquez, A., Production of bacterial nanocellulose from non-conventional fermentation media (2016) Multifunctional polymeric nanocomposites based on cellulosic reinforcements, pp. 39-59. , Puglia D, Fortunati E, Kenny JM, (eds), Elsevier Inc, Amsterdam
  • Lee, K.-Y., Bismarck, A., Bacterial nanocellulose as reinforcement for polymer matrices (2016) Bacterial nanocellulose from biotechnology to bio-economy, pp. 109-122. , Gama M, Dourado F, Bielecki S, (eds), Elsevier, Chenai
  • Panaitescu, D.M., Frone, A.N., Chiulan, I., (2016) Ind Crops Prod, 93, p. 251
  • Agustin, M.B., Nakatsubo, F., Yano, H., (2016) Cellulose, 23, p. 451
  • Berlioz, S., Molina-Boisseau, S., Nishiyama, Y., Heux, L., (2009) Biomacromolecules, 10, p. 2144
  • Blaker, J.J., Walters, K.-Y.M., Drouet, M., Bismarck, A., (2014) React Funct Polym, 85, p. 185
  • Cunha, A.G., Zhou, Q., Larsson, P.T., Berglund, L.A., (2014) Cellulose, 21, p. 2773
  • Suetsugu, M., Kotera, M., Nishino, M.T., Cellulosic nanocomposite prepared by acetylation of bacterial cellulose using supercritical carbon dioxide (2009) 17Th International Conference on Composite Materials, 2009, , Edinburgh, UK
  • Gonçalves, S., Padrão, J., Rodrigues, I.P., Silva, J.P., Sencadas, V., Lanceros-Mendez, S., Girão, H., Rodrigues, L.R., (2015) Biomacromolecules, 16, p. 1341
  • Hu, W., Chen, S., Xu, Q., Wang, H., (2011) Carbohydr Polym, 83, p. 1575
  • Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H., (2007) Biomacromolecules, 8, p. 1973
  • Kim, D., Nishiyama, Y., Kuga, S., (2002) Cellulose, 9, p. 361
  • Lee, K.-Y., Quero, F., Blaker, J.J., Hill, C.A.S., Eichhorn, S.J., Bismarck, A., (2011) Cellulose, 18, p. 595
  • Lee, K.-Y., Bismarck, A., (2012) Cellulose, 19, p. 891
  • Tomé, L.C., Brandão, L., Mendes, A.M., Silvestre, A.J.D., Neto, C.P., Gandini, A., Freire, C.S.R., Marrucho, I.M., (2010) Cellulose, 17, p. 1203
  • Tomé, L.C., Freire, M.G., Rebelo, L.P.N., Silvestre, A.J.D., Neto, C.P., Marrucho, I.M., Freire, C.S.R., (2011) Green Chem, 13, p. 2464
  • Yamamoto, H., Horii, F., Hirai, A., (2006) Cellulose, 13, p. 327
  • Ávila Ramírez, J.A., Juan Suriano, C., Cerrutti, P., Foresti, M.L., (2014) Carbohydr Polym, 114, p. 416
  • Ávila Ramírez, J.A., Gómez Hoyos, C., Arroyo, S., Cerrutti, P., Foresti, M.L., Curr, M.L., (2016) Organocatal, 3, p. 161
  • Ávila Ramírez, J.A., Gómez Hoyos, C., Arroyo, S., Cerrutti, P., Foresti, M.L., (2016) Carbohydr Polym, 153, p. 686
  • Domínguez De María, P., (2010) Chemcatchem, 2, p. 487
  • Cerrutti, P., Roldán, P., Martínez García, R., Galvagno, M.A., Vázquez, A., Foresti, M.L., (2016) J Appl Polym Sci, 133, p. 43109
  • Hestrin, S., Schramm, M., (1954) Biochem J, 58, p. 345
  • Ilharco, L.M., Gracia, R.R., da Silva, J.L., Ferreira, L.F.V., (1997) Langmuir, 13, p. 4126
  • Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M., (1959) ‎Text Res J, 29, p. 786
  • Turner, J.F., Riga, A., Connor, A., Zhang, J., Collis, J., (2004) J Therm Anal Calorim, 75, p. 257
  • Haigler, C.H., (1982) Read, Alteration of Cellulose Assembly in Acetobacter Xylinum by Fluorescent Brightening Agents, Direct Dyes and Cellulose Derivatives, , University of North Carolina at Chapel Hill
  • Hirai, A., Tsuji, M., Yamamoto, H., Horii, F., (1998) Cellulose, 5, p. 201
  • Gan, K., Nechwatal, A., Frankenfeld, K., Schlufter, K., (2012) J Compos Mater, 2, p. 97
  • Dai, X., Cao, Y., Wang, X., (2016) RSC Adv, 6, p. 71461
  • Teixeira, E.M., de Campos, A., Marconcini, J.M., Bondancia, T.J., Wood, D., Klamczynski, A., Mattoso, L.H.C., Glenn, G.M., (2014) RSC Adv, 4, p. 6616
  • Young, R.J., Lovell, P.A., (1991) Introduction to polymers, Chap. 5, , 2, Chapman and Hall, London
  • Pérez, E., Famá, L., Pardo, S.G., Abad, M.J., Bernal, C., (2012) Composites B, 43, p. 2795

Citas:

---------- APA ----------
Ávila Ramírez, J.A., Cerrutti, P., Bernal, C., Errea, M.I. & Foresti, M.L. (2019) . Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route. Journal of Polymers and the Environment, 27(3), 510-520.
http://dx.doi.org/10.1007/s10924-019-01367-5
---------- CHICAGO ----------
Ávila Ramírez, J.A., Cerrutti, P., Bernal, C., Errea, M.I., Foresti, M.L. "Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route" . Journal of Polymers and the Environment 27, no. 3 (2019) : 510-520.
http://dx.doi.org/10.1007/s10924-019-01367-5
---------- MLA ----------
Ávila Ramírez, J.A., Cerrutti, P., Bernal, C., Errea, M.I., Foresti, M.L. "Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route" . Journal of Polymers and the Environment, vol. 27, no. 3, 2019, pp. 510-520.
http://dx.doi.org/10.1007/s10924-019-01367-5
---------- VANCOUVER ----------
Ávila Ramírez, J.A., Cerrutti, P., Bernal, C., Errea, M.I., Foresti, M.L. Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route. J. Polym. Environ. 2019;27(3):510-520.
http://dx.doi.org/10.1007/s10924-019-01367-5