Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tolerance to water deficits was evolutionarily relevant to the conquest of land by primitive plants. In this context, epigenetic events may have played important roles in the establishment of drought stress responses. We decided to inspect epigenetic marks in the plant organ that is crucial in the sensing of drought stress: the root. Using tomato as a crop model plant, we detected the methylated epialleles of Asr2, a protein-coding gene widespread in the plant kingdom and thought to alleviate restricted water availability. We found 3 contexts (CG, CNG, and CNN) of methylated cytosines in the regulatory region of Solanum lycopersicum Asr2 but only one context (CG) in the gene body. To test the hypothesis of a link between epigenetics marks and the adaptation of plants to drought, we explored the cytosine methylation status of Asr2 in the root resulting from water-deficit stress conditions. We found that a brief exposure to simulated drought conditions caused the removal of methyl marks in the regulatory region at 77 of the 142 CNN sites. In addition, the study of histone modifications around this model gene in the roots revealed that the distal regulatory region was rich in H3K27me3 but that its abundance did not change as a consequence of stress. Additionally, under normal conditions, both the regulatory and coding regions contained the typically repressive H3K9me2 mark, which was lost after 30 min of water deprivation. As analogously conjectured for the paralogous gene Asr1, rapidly acquired new Asr2 epialleles in somatic cells due to desiccation might be stable enough and heritable through the germ line across generations, thereby efficiently contributing to constitutive, adaptive gene expression during the evolution of desiccation-tolerant populations or species. © 2013 Landes Bioscience.

Registro:

Documento: Artículo
Título:Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions
Autor:González, R.M.; Ricardi, M.M.; Iusem, N.D.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), CONICET, Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Asr2; Epigenetics; Methylation; Roots; Tomato; Water stress; actin; abscisic acid stress and ripening 1 gene; abscisic acid stress and ripening 2 gene; article; cell death; cell viability; chromatin immunoprecipitation; controlled study; DNA methylation; drought stress; epigenetics; gene; gene expression; gene locus; gene repression; histone modification; nonhuman; plant root; polymerase chain reaction; tomato; water loss; water stress; weight; Lycopersicon esculentum; Asr2; epigenetics; methylation; roots; tomato; water stress; Adaptation, Physiological; Dehydration; DNA Methylation; Droughts; Enhancer Elements, Genetic; Epigenesis, Genetic; Gene Expression Regulation, Plant; Lycopersicon esculentum; Plant Proteins; Plant Roots; Promoter Regions, Genetic; Water
Año:2013
Volumen:8
Número:8
Página de inicio:864
Página de fin:872
DOI: http://dx.doi.org/10.4161/epi.25524
Título revista:Epigenetics
Título revista abreviado:Epigenetics
ISSN:15592294
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15592294_v8_n8_p864_Gonzalez

Referencias:

  • Reinders, J., Paszkowski, J., Unlocking the Arabidopsis epigenome (2009) Epigenetics, 4, pp. 557-563. , http://dx.doi.org/10.4161/epi.4.8.10347, PMID:19934651
  • Zhang, M., Kimatu, J.N., Xu, K., Liu, B., DNA cytosine methylation in plant development (2010) J Genet Genomics, 37, pp. 1-12. , http://dx.doi.org/10.1016/S1673-8527(09)60020-5, PMID:20171573
  • Akimoto, K., Katakami, H., Kim, H.J., Ogawa, E., Sano, C.M., Wada, Y., Epigenetic inheritance in rice plants (2007) Ann Bot, 100, pp. 205-217. , http://dx.doi.org/10.1093/aob/mcm110, PMID:17576658
  • Wang, X., Elling, A.A., Li, X., Li, N., Peng, Z., He, G., Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize (2009) Plant Cell, 21, pp. 1053-1069. , http://dx.doi.org/10.1105/tpc.109.065714, PMID:19376930
  • Chen, M., Lv, S., Meng, Y., Epigenetic performers in plants (2010) Dev Growth Differ, 52, pp. 555-566. , http://dx.doi.org/10.1111/j.1440-169X.2010.01192.x, PMID:20646028
  • Meyer, P., DNA methylation systems and targets in plants (2011) FEBS Lett, 585, pp. 2008-2015. , http://dx.doi.org/10.1016/j.febslet.2010.08.017, PMID:20727353
  • Finnegan, E.J., Peacock, W.J., Dennis, E.S., Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development (1996) Proc Natl Acad Sci U S A, 93, pp. 8449-8454. , http://dx.doi.org/10.1073/pnas.93.16.8449, PMID:8710891
  • Du, J., Zhong, X., Bernatavichute, Y.V., Stroud, H., Feng, S., Caro, E., Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants (2012) Cell, 151, pp. 167-180. , http://dx.doi.org/10.1016/j.cell.2012.07.034, PMID:23021223
  • Jackson, J.P., Lindroth, A.M., Cao, X., Jacobsen, S.E., Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase (2002) Nature, 416, pp. 556-560. , http://dx.doi.org/10.1038/nature731, PMID:11898023
  • Cao, X., Jacobsen, S.E., Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing (2002) Curr Biol, 12, pp. 1138-1144. , http://dx.doi.org/10.1016/S0960-9822(02)00925-9, PMID:12121623
  • Zhang, X., The epigenetic landscape of plants (2008) Science, 320, pp. 489-492. , http://dx.doi.org/10.1126/science.1153996, PMID:18436779
  • Feng, S., Jacobsen, S.E., Reik, W., Epigenetic reprogramming in plant and animal development (2010) Science, 330, pp. 622-627. , http://dx.doi.org/10.1126/science.1190614, PMID:21030646
  • Miura, A., Nakamura, M., Inagaki, S., Kobayashi, A., Saze, H., Kakutani, T., An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites (2009) EMBO J, 28, pp. 1078-1086. , http://dx.doi.org/10.1038/emboj.2009.59, PMID:19262562
  • Qiu, Y.L., Palmer, J.D., Phylogeny of early land plants: Insights from genes and genomes (1999) Trends Plant Sci, 4, pp. 26-30. , http://dx.doi.org/10.1016/S1360-1385(98)01361-2, PMID:10234267
  • The tomato genome sequence provides insights into fleshy fruit evolution (2012) Nature, 485, pp. 635-641. , http://dx.doi.org/10.1038/nature11119, Tomato Genome Consortium PMID:22660326
  • Teyssier, E., Bernacchia, G., Maury, S., How Kit, A., Stammitti-Bert, L., Rolin, D., Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening (2008) Planta, 228, pp. 391-399. , http://dx.doi.org/10.1007/s00425-008-0743-z, PMID:18488247
  • González, R.M., Ricardi, M.M., Iusem, N.D., Atypical epigenetic mark in an atypical location: Cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene (2011) BMC Plant Biol, 11, p. 94. , http://dx.doi.org/10.1186/1471-2229-11-94, PMID:21599976
  • Zhong, S., Fei, Z., Chen, Y.R., Zheng, Y., Huang, M., Vrebalov, J., Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening (2013) Nat Biotechnol, 31, pp. 154-159. , http://dx.doi.org/10.1038/nbt.2462, PMID:23354102
  • Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., Covarrubias, A.A., The enigmatic LEA proteins and other hydrophilins (2008) Plant Physiol, 148, pp. 6-24. , http://dx.doi.org/10.1104/pp.108.120725, PMID:18772351
  • Frankel, N., Carrari, F., Hasson, E., Iusem, N.D., Evolutionary history of the Asr gene family (2006) Gene, 378, pp. 74-83. , http://dx.doi.org/10.1016/j.gene.2006.05.010, PMID:16822623
  • Maskin, L., Gudesblat, G.E., Moreno, J.E., Carrari, F.O., Frankel, N.S., Sambade, A., Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum) (2001) Plant Sci, 161, pp. 739-746. , http://dx.doi.org/10.1016/S0168-9452(01)00464-2
  • Konrad, Z., Bar-Zvi, D., Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine (2008) Planta, 227, pp. 1213-1219. , http://dx.doi.org/10.1007/s00425-008-0693-5, PMID:18270732
  • Maskin, L., Frankel, N., Gudesblat, G., Demergasso, M.J., Pietrasanta, L.I., Iusem, N.D., Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss (2007) Biochem Biophys Res Commun, 352, pp. 831-835. , http://dx.doi.org/10.1016/j.bbrc.2006.11.115, PMID:17157822
  • Ricardi, M.M., Guaimas, F.F., González, R.M., Burrieza, H.P., López-Fernández, M.P., Jares-Erijman, E.A., Nuclear import and dimerization of tomato ASR1, a water stress-inducible protein exclusive to plants (2012) PLoS One, 7, pp. e41008. , http://dx.doi.org/10.1371/journal.pone.0041008, PMID:22899993
  • Moretti, M.B., Maskin, L., Gudesblat, G., García, S.C., Iusem, N.D., ASR1, a stress-induced tomato protein, protects yeast from osmotic stress (2006) Physiol Plant, 127, pp. 111-118. , http//dxdoiorg/101111/j1399-3054200600664x
  • Giombini, M.I., Frankel, N., Iusem, N.D., Hasson, E., Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato (2009) Genetica, 136, pp. 13-25. , http://dx.doi.org/10.1007/s10709-008-9295-1, PMID:18636230
  • Rossi, M., Carrari, F., Cabrera-Ponce, J.L., Vázquez-Rovere, C., Herrera-Estrella, L., Gudesblat, G., Analysis of an abscisic acid (ABA)-responsive gene promoter belonging to the Asr gene family from tomato in homologous and heterologous systems (1998) Mol Gen Genet, 258, pp. 1-8. , http://dx.doi.org/10.1007/s004380050700, PMID:9613566
  • Jones, V.A., Dolan, L., The evolution of root hairs and rhizoids (2012) Ann Bot, 110, pp. 205-212. , http://dx.doi.org/10.1093/aob/mcs136, PMID:22730024
  • Finnegan, E.J., Epialleles-a source of random variation in times of stress (2002) Curr Opin Plant Biol, 5, pp. 101-106. , http://dx.doi.org/10.1016/S1369-5266(02)00233-9, PMID:11856603
  • Boyko, A., Kovalchuk, I., Epigenetic control of plant stress response (2008) Environ Mol Mutagen, 49, pp. 61-72. , http://dx.doi.org/10.1002/em.20347, PMID:17948278
  • Chinnusamy, V., Zhu, J.K., Epigenetic regulation of stress responses in plants (2009) Curr Opin Plant Biol, 12, pp. 133-139. , http://dx.doi.org/10.1016/j.pbi.2008.12.006, PMID:19179104
  • Caramelo, J.J., Iusem, N.D., When cells lose water: Lessons from biophysics and molecular biology (2009) Prog Biophys Mol Biol, 99, pp. 1-6. , http://dx.doi.org/10.1016/j.pbiomolbio.2008.10.001, PMID:18977383
  • Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., Ilnytskyy, Y., Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins (2010) PLoS One, 5, pp. e9514. , http://dx.doi.org/10.1371/journal.pone.0009514, PMID:20209086
  • Kouzarides, T., Chromatin modifications and their function (2007) Cell, 128, pp. 693-705. , http://dx.doi.org/10.1016/j.cell.2007.02.005, PMID:17320507
  • Clark, S.J., Statham, A., Stirzaker, C., Molloy, P.L., Frommer, M., DNA methylation: Bisulphite modification and analysis (2006) Nat Protoc, 1, pp. 2353-2364. , http://dx.doi.org/10.1038/nprot.2006.324, PMID:17406479
  • Henderson, I.R., Chan, S.R., Cao, X., Johnson, L., Jacobsen, S.E., Accurate sodium bisulfite sequencing in plants (2010) Epigenetics, 5, pp. 47-49. , http://dx.doi.org/10.4161/epi.5.1.10560, PMID:20081358
  • Peng, Q., Ecker, J.R., Detection of allele-specific methylation through a generalized heterogeneous epigenome model (2012) Bioinformatics, 28, pp. i163-i171. , http://dx.doi.org/10.1093/bioinformatics/bts231, PMID:22689757
  • Feng, S., Jacobsen, S.E., Epigenetic modifications in plants: An evolutionary perspective (2011) Curr Opin Plant Biol, 14, pp. 179-186. , http://dx.doi.org/10.1016/j.pbi.2010.12.002, PMID:21233005
  • Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., Highly integrated singlebase resolution maps of the epigenome in Arabidopsis (2008) Cell, 133, pp. 523-536. , http://dx.doi.org/10.1016/j.cell.2008.03.029, PMID:18423832
  • Shibuya, K., Fukushima, S., Takatsuji, H., RNA-directed DNA methylation induces transcriptional activation in plants (2009) Proc Natl Acad Sci U S A, 106, pp. 1660-1665. , http://dx.doi.org/10.1073/pnas.0809294106, PMID:19164525
  • Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis (2006) Cell, 126, pp. 1189-1201. , http://dx.doi.org/10.1016/j.cell.2006.08.003, PMID:16949657
  • Henderson, I.R., Jacobsen, S.E., Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading (2008) Genes Dev, 22, pp. 1597-1606. , http://dx.doi.org/10.1101/gad.1667808, PMID:18559476
  • Widman, N., Jacobsen, S.E., Pellegrini, M., Determining the conservation of DNA methylation in Arabidopsis (2009) Epigenetics, 4, pp. 119-124. , http://dx.doi.org/10.4161/epi.4.2.8214, PMID:19384058
  • Diéguez, M.J., Bellotto, M., Afsar, K., Mittelsten Scheid, O., Paszkowski, J., Methylation of cytosines in nonconventional methylation acceptor sites can contribute to reduced gene expression (1997) Mol Gen Genet, 253, pp. 581-588. , http://dx.doi.org/10.1007/s004380050360, PMID:9065691
  • Greenberg, M.V., Ausin, I., Chan, S.W., Cokus, S.J., Cuperus, J.T., Feng, S., Identification of genes required for de novo DNA methylation in Arabidopsis (2011) Epigenetics, 6, pp. 344-354. , http://dx.doi.org/10.4161/epi.6.3.14242, PMID:21150311
  • You, W., Tyczewska, A., Spencer, M., Daxinger, L., Schmid, M.W., Grossniklaus, U., Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana (2012) BMC Plant Biol, 12, p. 51. , http://dx.doi.org/10.1186/1471-2229-12-51, PMID:22512782
  • Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., The SRA methyl-cytosine-binding domain links DNA and histone methylation (2007) Curr Biol, 17, pp. 379-384. , http://dx.doi.org/10.1016/j.cub.2007.01.009, PMID:17239600
  • Johnson, L.M., Law, J.A., Khattar, A., Henderson, I.R., Jacobsen, S.E., SRA-domain proteins required for DRM2-mediated de novo DNA methylation (2008) PLoS Genet, 4, pp. e1000280. , http://dx.doi.org/10.1371/journal.pgen.1000280, PMID:19043555
  • Woo, H.R., Pontes, O., Pikaard, C.S., Richards, E.J., VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization (2007) Genes Dev, 21, pp. 267-277. , http://dx.doi.org/10.1101/gad.1512007, PMID:17242155
  • Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation (2001) Science, 292, pp. 2077-2080. , http://dx.doi.org/10.1126/science.1059745, PMID:11349138
  • Saze, H., Tsugane, K., Kanno, T., Nishimura, T., DNA methylation in plants: Relationship to small RNAs and histone modifications, and functions in transposon inactivation (2012) Plant Cell Physiol, 53, pp. 766-784. , http://dx.doi.org/10.1093/pcp/pcs008, PMID:22302712
  • Baek, D., Jiang, J., Chung, J.S., Wang, B., Chen, J., Xin, Z., Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance (2011) Plant Cell Physiol, 52, pp. 149-161. , http://dx.doi.org/10.1093/pcp/pcq182, PMID:21097475
  • Zhang, M., Xu, C., von Wettstein, D., Liu, B., Tissue-specific differences in cytosine methylation and their association with differential gene expression in sorghum (2011) Plant Physiol, 156, pp. 1955-1966. , http://dx.doi.org/10.1104/pp.111.176842, PMID:21632971
  • Li, X., Zhu, J., Hu, F., Ge, S., Ye, M., Xiang, H., Singlebase resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression (2012) BMC Genomics, 13, p. 300. , http://dx.doi.org/10.1186/1471-2164-13-300, PMID:22747568
  • Wang, W.S., Pan, Y.J., Zhao, X.Q., Dwivedi, D., Zhu, L.H., Ali, J., Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.) (2011) J Exp Bot, 62, pp. 1951-1960. , http://dx.doi.org/10.1093/jxb/erq391, PMID:21193578
  • Stroud, H., Greenberg, M.V., Feng, S., Bernatavichute, Y.V., Jacobsen, S.E., Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome (2013) Cell, 152, pp. 352-364. , http://dx.doi.org/10.1016/j.cell.2012.10.054, PMID:23313553
  • Henderson, I.R., Jacobsen, S.E., Epigenetic inheritance in plants (2007) Nature, 447, pp. 418-424. , http://dx.doi.org/10.1038/nature05917, PMID:17522675
  • Gehring, M., Henikoff, S., DNA methylation dynamics in plant genomes (2007) Biochim Biophys Acta, 1769, pp. 276-286. , http://dx.doi.org/10.1016/j.bbaexp.2007.01.009, PMID:17341434
  • Hunter, B., Hollister, J.D., Bomblies, K., Epigenetic inheritance: What news for evolution (2012) Curr Biol, 22, pp. R54-R56. , http://dx.doi.org/10.1016/j.cub.2011.11.054, PMID:22280908
  • Lang-Mladek, C., Popova, O., Kiok, K., Berlinger, M., Rakic, B., Aufsatz, W., Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis (2010) Mol Plant, 3, pp. 594-602. , http://dx.doi.org/10.1093/mp/ssq014, PMID:20410255
  • Peralta, I.E., Spooner, D.M., Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon) (2001) Am J Bot, 88, pp. 1888-1902. , http://dx.doi.org/10.2307/3558365, PMID:21669622
  • Wojdacz, T.K., Hansen, L.L., Dobrovic, A., A new approach to primer design for the control of PCR bias in methylation studies (2008) BMC Res Notes, 1, p. 54. , http://dx.doi.org/10.1186/1756-0500-1-54, PMID:18710507
  • Gruntman, E., Qi, Y., Slotkin, R.K., Roeder, T., Martienssen, R.A., Sachidanandam, R., Kismeth: Analyzer of plant methylation states through bisulfite sequencing (2008) BMC Bioinformatics, 9, p. 371. , http://dx.doi.org/10.1186/1471-2105-9-371, PMID:18786255
  • Ricardi, M.M., González, R.M., Iusem, N.D., Protocol: Fine-tuning of a Chromatin Immunoprecipitation (ChIP) protocol in tomato (2010) Plant Methods, 6, p. 11. , http://dx.doi.org/10.1186/1746-4811-6-11, PMID:20380723
  • Tamás, L., Simonovicova, M., Huttova, J., Mistrik, I., Aluminium stimulated hydrogen peroxide production of germinating barley seeds (2004) Environ Exp Bot, 51, pp. 281-288. , http://dx.doi.org/10.1016/j.envexpbot.2003.11.007

Citas:

---------- APA ----------
González, R.M., Ricardi, M.M. & Iusem, N.D. (2013) . Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics, 8(8), 864-872.
http://dx.doi.org/10.4161/epi.25524
---------- CHICAGO ----------
González, R.M., Ricardi, M.M., Iusem, N.D. "Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions" . Epigenetics 8, no. 8 (2013) : 864-872.
http://dx.doi.org/10.4161/epi.25524
---------- MLA ----------
González, R.M., Ricardi, M.M., Iusem, N.D. "Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions" . Epigenetics, vol. 8, no. 8, 2013, pp. 864-872.
http://dx.doi.org/10.4161/epi.25524
---------- VANCOUVER ----------
González, R.M., Ricardi, M.M., Iusem, N.D. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics. 2013;8(8):864-872.
http://dx.doi.org/10.4161/epi.25524