Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present a theoretical approach for calculating the fields diffracted by gratings made of highly conducting wires that have a rectangular shape. The fields between the wires are represented in terms of modal expansions that satisfy the approximated impedance boundary condition. Our results show that this procedure is particularly suited to dealing with gold gratings used in the infrared range, a spectral region where the assumption of a perfect conductor does not hold, and where the rigorous modal method assuming penetrable wires exhibits numerical instabilities linked with the high conductivity of gold. Numerical results are presented, and the theory is used to determine wire parameters by fitting theoretical and experimental data. © 1993 Optical Society of America.

Registro:

Documento: Artículo
Título:Highly conducting wire gratings in the resonance region
Autor:Lochbihler, H.; Depine, R.
Filiación:Max Planck Institut für Extraterrestrische Physik, Garching bei MUnchen, 8046, Germany
Departamento de Fisica, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Gold; Numerical methods; Semiconductor quantum wells; Diffraction gratings; High conductivity; Impedance boundary conditions; Numerical instability; Numerical results; Rectangular shapes; Resonance region; Theoretical approach; Wire parameters; Wire; Optics; High-energy transmission grating (HETG); Highly conducting wire gratings; Low energy transmission grating (LETG); Modal method; Rayleigh expansions
Año:1993
Volumen:32
Número:19
Página de inicio:3459
Página de fin:3465
DOI: http://dx.doi.org/10.1364/AO.32.003459
Título revista:Applied Optics
Título revista abreviado:Appl. Opt.
ISSN:1559128X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1559128X_v32_n19_p3459_Lochbihler

Referencias:

  • Schattenburg, M.L., Cañizares, C.R., Dewey, D., Levine, A.M., Markert, T.H., Smith, H.I., Transmission grating spectroscopy and the advanced x-ray astrophysics facility (AXAF) (1988) X-Ray Instrumentation in Astronomy II, 982, pp. 210-218. , L. Golub, ed., Proc. Soc. Photo-Opt. Instrum. Eng
  • Brinkman, A.C., Van Rooijen, J.J., Bleeker, J.A.M., Dijkstra, J.H., Heise, J., De Korte, P.A.J., Mewe, R., Paerels, T., Low energy x-ray transmission grating spectrometer for AXAF (1985) X-Ray Instrumentation in Astronomy, 597, pp. 232-237. , J. L. Cul-hane, ed., Proc. Soc. Photo-Opt. Instrum. Eng
  • Brauninger, H., Kraus, H., Dangschat, H., Predehl, P., Trumper, J., Fabrication of transmission gratings for use in cosmic x-ray and XUV astronomy (1979) Appl. Opt, 18, pp. 3502-3505
  • Lochbihler, H., Predehl, P., Characterization of x-ray transmission gratings (1992) Appl. Opt, 31, pp. 964-971
  • Petit, R., A tutorial introduction (1980) Electromagnetic Theory of Gratings, pp. 26-30. , R. Petit, ed, Springer-Verlag, Berlin
  • Andrewartha, J.R., Fox, J.R., Wilson, I.J., Resonance anomalies in the lamellar grating (1979) Opt. Acta, 26, pp. 69-89
  • Brauninger, H., Predehl, P., Beuermann, K.P., Transmission grating efficiencies for wavelengths between 5.4 A and 44.8 A (1979) Appl. Opt, 18, pp. 368-373
  • Maystre, D., Neviere, M., Petit, R., Experimental verifications and applications of the theory (1980) Electromagnetic Theory of Gratings, pp. 159-223. , R. Petit, ed, Springer-Verlag, Berlin
  • Depine, R.A., Perfectly conducting diffraction grating formalisms extended to good conductors via the surface impedance boundary condition (1987) Appl. Opt, 26, pp. 2348-2354
  • Botten, L.C., Craig, M.S., McPhedran, R.C., Adams, J.L., Andrewartha, J.R., The finitely conducting lamellar diffraction grating (1981) Opt. Acta, 28, pp. 1087-1102
  • Botten, L.C., Craig, M.S., McPhedran, R.C., Highly conducting lamellar diffraction gratings (1981) Opt. Acta, 28, pp. 1103-1106
  • Roberts, A., McPhedran, R.C., Power losses in highly conducting lamellar gratings (1987) J. Mod. Opt, 34, pp. 511-538
  • Botten, L.C., Craig, M.S., McPhedran, R.C., Complex zeros of analytic functions (1983) Comput. Phys. Commun, 29, pp. 245-259
  • Depine, R.A., Surface impedance boundary conditions used to study light scattering from metallic surfaces (1990) Scattering in Volumes and Surfaces, pp. 239-254. , M. Nieto-Vesperinas and J. C. Dainty, eds, North-Holland, Amsterdam
  • Nakata, Y., Koshiba, M., Boundary-element analysis of plane wave diffraction from groove-type dielectric and metallic gratings (1990) J. Opt. Soc. Am. A, 7, pp. 1494-1502

Citas:

---------- APA ----------
Lochbihler, H. & Depine, R. (1993) . Highly conducting wire gratings in the resonance region. Applied Optics, 32(19), 3459-3465.
http://dx.doi.org/10.1364/AO.32.003459
---------- CHICAGO ----------
Lochbihler, H., Depine, R. "Highly conducting wire gratings in the resonance region" . Applied Optics 32, no. 19 (1993) : 3459-3465.
http://dx.doi.org/10.1364/AO.32.003459
---------- MLA ----------
Lochbihler, H., Depine, R. "Highly conducting wire gratings in the resonance region" . Applied Optics, vol. 32, no. 19, 1993, pp. 3459-3465.
http://dx.doi.org/10.1364/AO.32.003459
---------- VANCOUVER ----------
Lochbihler, H., Depine, R. Highly conducting wire gratings in the resonance region. Appl. Opt. 1993;32(19):3459-3465.
http://dx.doi.org/10.1364/AO.32.003459