Artículo

Kittelmann, S.; Buffry, A.D.; Franke, F.A.; Almudi, I.; Yoth, M.; Sabaris, G.; Couso, J.P.; Nunes, M.D.S.; Frankel, N.; Gómez-Skarmeta, J.L.; Pueyo-Marques, J.; Arif, S.; McGregor, A.P. "Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution" (2018) PLoS Genetics. 14(5)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary ‘hotspots’ are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the ‘naked valley’ on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution. © 2018 Kittelmann et al. http://creativecommons.org/licenses/by/4.0/

Registro:

Documento: Artículo
Título:Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution
Autor:Kittelmann, S.; Buffry, A.D.; Franke, F.A.; Almudi, I.; Yoth, M.; Sabaris, G.; Couso, J.P.; Nunes, M.D.S.; Frankel, N.; Gómez-Skarmeta, J.L.; Pueyo-Marques, J.; Arif, S.; McGregor, A.P.
Filiación:Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla, Spain
Departmento de Ecologia, Genetica y Evolucion, IEGEBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Brighton and Sussex Medical School, University of Sussex, East Sussex, Falmer, Brighton, United Kingdom
Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
Palabras clave:microRNA; microRNA 92a; transcription factor; transcription factor shavenbaby; unclassified drug; DNA binding protein; Drosophila protein; microRNA; MIRN92 microRNA, Drosophila; ovo protein, Drosophila; transcription factor; animal tissue; Article; controlled study; convergent evolution; Drosophila melanogaster; ectopic expression; embryo; enhancer region; exon; femur; gene expression; gene regulatory network; gene repression; leg; morphological adaptation; nonhuman; pupa; reporter gene; repressor gene; RNA sequence; trichome; animal; animal structures; classification; gene expression regulation; genetics; growth, development and aging; larva; metabolism; molecular evolution; mutation; transgenic animal; Animal Structures; Animals; Animals, Genetically Modified; DNA-Binding Proteins; Drosophila melanogaster; Drosophila Proteins; Evolution, Molecular; Gene Expression Regulation, Developmental; Gene Regulatory Networks; Larva; MicroRNAs; Mutation; Transcription Factors
Año:2018
Volumen:14
Número:5
DOI: http://dx.doi.org/10.1371/journal.pgen.1007375
Título revista:PLoS Genetics
Título revista abreviado:PLoS Genet.
ISSN:15537390
CAS:DNA-Binding Proteins; Drosophila Proteins; MicroRNAs; MIRN92 microRNA, Drosophila; ovo protein, Drosophila; Transcription Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15537390_v14_n5_p_Kittelmann

Referencias:

  • Arif, S., Murat, S., Almudi, I., Nunes, M.D., Bortolamiol-Becet, D., Evolution of mir-92a Underlies Natural Morphological Variation in Drosophila melanogaster (2013) Curr Biol, 23, pp. 523-528. , 23453955
  • Arnoult, L., Su, K.F., Manoel, D., Minervino, C., Magrina, J., Emergence and diversification of fly pigmentation through evolution of a gene regulatory module (2013) Science, 339, pp. 1423-1426. , 23520110
  • Chan, Y.F., Marks, M.E., Jones, F.C., Villarreal, G., Jr., Shapiro, M.D., Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer (2010) Science, 327, pp. 302-305. , 20007865
  • Colosimo, P.F., Peichel, C.L., Nereng, K., Blackman, B.K., Shapiro, M.D., The genetic architecture of parallel armor plate reduction in threespine sticklebacks (2004) PLoS Biol, 2, p. E109. , 15069472
  • Frankel, N., Davis, G.K., Vargas, D., Wang, S., Payre, F., Phenotypic robustness conferred by apparently redundant transcriptional enhancers (2010) Nature, 466, pp. 490-493. , 20512118
  • Frankel, N., Erezyilmaz, D.F., McGregor, A.P., Wang, S., Payre, F., Morphological evolution caused by many subtle-effect substitutions in regulatory DNA (2011) Nature, 474, pp. 598-603. , 21720363
  • Gompel, N., Prud'homme, B., Wittkopp, P.J., Kassner, V.A., Carroll, S.B., Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila (2005) Nature, 433, pp. 481-487. , 15690032
  • Guerreiro, I., Gitto, S., Novoa, A., Codourey, J., Nguyen Huynh, T.H., Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan (2016) Elife, 5
  • Lang, M., Murat, S., Clark, A.G., Gouppil, G., Blais, C., Mutations in the neverland gene turned Drosophila pachea into an obligate specialist species (2012) Science, 337, pp. 1658-1661. , 23019649
  • McGregor, A.P., Orgogozo, V., Delon, I., Zanet, J., Srinivasan, D.G., Morphological evolution through multiple cis-regulatory mutations at a single gene (2007) Nature, 448, pp. 587-590. , 17632547
  • Prud'homme, B., Gompel, N., Rokas, A., Kassner, V.A., Williams, T.M., Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene (2006) Nature, 440, pp. 1050-1053. , 16625197
  • Reed, R.D., Papa, R., Martin, A., Hines, H.M., Counterman, B.A., optix drives the repeated convergent evolution of butterfly wing pattern mimicry (2011) Science, 333, pp. 1137-1141. , 21778360
  • Santos, M.E., Le Bouquin, A., Crumière, A.J.J., Khila, A., Taxon-restricted genes at the origin of a novel trait allowing access to a new environment (2017) Science, 358, pp. 386-390. , 29051384
  • Shapiro, M.D., Marks, M.E., Peichel, C.L., Blackman, B.K., Nereng, K.S., Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks (2004) Nature, 428, pp. 717-723. , 15085123
  • Martin, A., McCulloch, K.J., Patel, N.H., Briscoe, A.D., Gilbert, L.E., Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations (2014) Evodevo, 5, p. 7. , 24499528
  • Carroll, S.B., Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution (2008) Cell, 134, pp. 25-36. , 18614008
  • Martin, A., Orgogozo, V., The Loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation (2013) Evolution, 67, pp. 1235-1250. , 23617905
  • Kopp, A., Metamodels and phylogenetic replication: a systematic approach to the evolution of developmental pathways (2009) Evolution, 63, pp. 2771-2789. , 19545263
  • Stern, D.L., (2011) Evolution, Development and the Predictable Genome, , ().:. Greenwood Village Roberts and Company
  • Stern, D.L., Orgogozo, V., The loci of evolution: how predictable is genetic evolution? (2008) Evolution, 62, pp. 2155-2177. , 18616572
  • Stern, D.L., Orgogozo, V., Is genetic evolution predictable? (2009) Science, 323, pp. 746-751. , 19197055
  • Arif, S., Kittelmann, S., McGregor, A.P., From shavenbaby to the naked valley: trichome formation as a model for evolutionary developmental biology (2015) Evol Dev, 17, pp. 120-126. , 25627718
  • Balmert, A., Florian Bohn, H., Ditsche-Kuru, P., Barthlott, W., Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces (2011) J Morphol, 272, pp. 442-451. , 21290417
  • Ditsche-Kuru, P., Schneider, E.S., Melskotte, J.E., Brede, M., Leder, A., Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention (2011) Beilstein J Nanotechnol, 2, pp. 137-144. , 21977425
  • Goodwyn, P.J., Voigt, D., Fujisaki, K., Skating and diving: Changes in functional morphology of the setal and microtrichial cover during ontogenesis in Aquarius paludum fabricius (Heteroptera, Gerridae) (2008) J Morphol, 269, pp. 734-744. , 18302188
  • Goodwyn, P.P., De Souza, E., Fujisaki, K., Gorb, S., Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider (2008) Acta Biomater, 4, pp. 766-770. , 18296131
  • Inestrosa, N.C., Sunkel, C.E., Arriagada, J., Garrido, J., Godoy-Herrera, R., Abnormal development of the locomotor activity in yellow larvae of Drosophila: a cuticular defect? (1996) Genetica, 97, pp. 205-210. , 8901139
  • Stern, D.L., Frankel, N., The structure and evolution of cis-regulatory regions: the shavenbaby story (2013) Philos Trans R Soc Lond B Biol Sci, 368, p. 20130028. , 24218640
  • Chanut-Delalande, H., Fernandes, I., Roch, F., Payre, F., Plaza, S., Shavenbaby couples patterning to epidermal cell shape control (2006) PLoS Biol, 4, p. e290. , 16933974
  • Chanut-Delalande, H., Hashimoto, Y., Pelissier-Monier, A., Spokony, R., Dib, A., Pri peptides are mediators of ecdysone for the temporal control of development (2014) Nat Cell Biol, 16, pp. 1035-1044. , 25344753
  • Galindo, M.I., Pueyo, J.I., Fouix, S., Bishop, S.A., Couso, J.P., Peptides encoded by short ORFs control development and define a new eukaryotic gene family (2007) PLoS Biol, 5, p. e106. , 17439302
  • Kondo, T., Plaza, S., Zanet, J., Benrabah, E., Valenti, P., Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis (2010) Science, 329, pp. 336-339. , 20647469
  • Menoret, D., Santolini, M., Fernandes, I., Spokony, R., Zanet, J., Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization (2013) Genome Biol, 14, p. R86. , 23972280
  • Overton, P.M., Chia, W., Buescher, M., The Drosophila HMG-domain proteins SoxNeuro and Dichaete direct trichome formation via the activation of shavenbaby and the restriction of Wingless pathway activity (2007) Development, 134, pp. 2807-2813. , 17611224
  • Ren, N., He, B., Stone, D., Kirakodu, S., Adler, P.N., The shavenoid gene of Drosophila encodes a novel actin cytoskeleton interacting protein that promotes wing hair morphogenesis (2006) Genetics, 172, pp. 1643-1653. , 16322503
  • Rizzo, N.P., Bejsovec, A., SoxNeuro and Shavenbaby act cooperatively to shape denticles in the embryonic epidermis of Drosophila (2017) Development, 144, pp. 2248-2258. , 28506986
  • Zanet, J., Benrabah, E., Li, T., Pelissier-Monier, A., Chanut-Delalande, H., Pri sORF peptides induce selective proteasome-mediated protein processing (2015) Science, 349, pp. 1356-1358. , 26383956
  • Delon, I., Chanut-Delalande, H., Payre, F., The Ovo/Shavenbaby transcription factor specifies actin remodelling during epidermal differentiation in Drosophila (2003) Mech Dev, 120, pp. 747-758. , 12915226
  • Sucena, E., Delon, I., Jones, I., Payre, F., Stern, D.L., Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism (2003) Nature, 424, pp. 935-938. , 12931187
  • Sucena, E., Stern, D.L., Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby (2000) Proc Natl Acad Sci U S A, 97, pp. 4530-4534. , 10781057
  • Frankel, N., Wang, S., Stern, D.L., Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution (2012) Proc Natl Acad Sci U S A, 109, pp. 20975-20979. , 23197832
  • Preger-Ben Noon, E., Davis, F.P., Stern, D.L., Evolved Repression Overcomes Enhancer Robustness (2016) Dev Cell, 39, pp. 572-584. , 27840106
  • Preger-Ben Noon, E., Sabaris, G., Ortiz, D.M., Sager, J., Liebowitz, A., Comprehensive Analysis of a cis-Regulatory Region Reveals Pleiotropy in Enhancer Function (2018) Cell Rep, 22, pp. 3021-3031. , 29539428
  • Stern, D.L., A role of Ultrabithorax in morphological differences between Drosophila species (1998) Nature, 396, pp. 463-466. , 9853753
  • Schertel, C., Rutishauser, T., Forstemann, K., Basler, K., Functional characterization of Drosophila microRNAs by a novel in vivo library (2012) Genetics, 192, pp. 1543-1552. , 23051640
  • Crocker, J., Abe, N., Rinaldi, L., McGregor, A.P., Frankel, N., Low affinity binding site clusters confer hox specificity and regulatory robustness (2015) Cell, 160, pp. 191-203. , 25557079
  • Yuva-Aydemir, Y., Xu, X.L., Aydemir, O., Gascon, E., Sayin, S., Downregulation of the Host Gene jigr1 by miR-92 Is Essential for Neuroblast Self-Renewal in Drosophila (2015) PLoS Genet, 11, p. e1005264. , 26000445
  • Chen, Y.W., Song, S., Weng, R., Verma, P., Kugler, J.M., Systematic study of Drosophila microRNA functions using a collection of targeted knockout mutations (2014) Dev Cell, 31, pp. 784-800. , 25535920
  • Davis, G.K., Srinivasan, D.G., Wittkopp, P.J., Stern, D.L., The function and regulation of Ultrabithorax in the legs of Drosophila melanogaster (2007) Dev Biol, 308, pp. 621-631. , 17640629
  • Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position (2013) Nat Methods, 10, pp. 1213-1218. , 24097267
  • Buenrostro, J.D., Wu, B., Chang, H.Y., Greenleaf, W.J., ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide (2015) Curr Protoc Mol Biol, 109, pp. 21.29.21-212929
  • Ruby, J.G., Stark, A., Johnston, W.K., Kellis, M., Bartel, D.P., Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs (2007) Genome Res, 17, pp. 1850-1864. , 17989254
  • Richardson, M.K., Brakefield, P.M., Developmental biology: hotspots for evolution (2003) Nature, 424, pp. 894-895. , 12931172
  • Cohen, S.M., Use of microRNA sponges to explore tissue-specific microRNA functions in vivo (2009) Nat Methods, 6, pp. 873-874. , 19935840
  • Agrawal, P., Habib, F., Yelagandula, R., Shashidhara, L.S., Genome-level identification of targets of Hox protein Ultrabithorax in Drosophila: novel mechanisms for target selection (2011) Sci Rep, 1, p. 205. , 22355720
  • Glassford, W.J., Johnson, W.C., Dall, N.R., Smith, S.J., Liu, Y., Co-option of an Ancestral Hox-Regulated Network Underlies a Recently Evolved Morphological Novelty (2015) Dev Cell, 34, pp. 520-531. , 26343453
  • Buffry, A.D., Mendes, C.C., McGregor, A.P., The Functionality and Evolution of Eukaryotic Transcriptional Enhancers (2016) Adv Genet, 96, pp. 143-206. , 27968730
  • Halfon, M.S., Perspectives on Gene Regulatory Network Evolution (2017) Trends Genet, 33, pp. 436-447. , 28528721
  • True, J.R., Haag, E.S., Developmental system drift and flexibility in evolutionary trajectories (2001) Evol Dev, 3, pp. 109-119. , 11341673
  • Jeong, S., Rokas, A., Carroll, S.B., Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution (2006) Cell, 125, pp. 1387-1399. , 16814723
  • Wittkopp, P.J., Vaccaro, K., Carroll, S.B., Evolution of yellow gene regulation and pigmentation in Drosophila (2002) Curr Biol, 12, pp. 1547-1556. , 12372246
  • Nunes, M.D., Arif, S., Schlotterer, C., McGregor, A.P., A perspective on micro-evo-devo: progress and potential (2013) Genetics, 195, pp. 625-634. , 24190920
  • Orr, H.A., Adaptation and the cost of complexity (2000) Evolution, 54, pp. 13-20. , 10937178
  • True, J., Insect melanism: the molecules matter (2003) Trends in Ecology and Evolution, 18, pp. 640-647
  • Waxman, D., Peck, J.R., Pleiotropy and the preservation of perfection (1998) Science, 279, pp. 1210-1213
  • Chen, X., Rosbash, M., MicroRNA-92a is a circadian modulator of neuronal excitability in Drosophila (2017) Nat Commun, 8, p. 14707. , 28276426
  • Dietzl, G., Chen, D., Schnorrer, F., Su, K.C., Barinova, Y., A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila (2007) Nature, 448, pp. 151-156. , 17625558
  • Kvon, E.Z., Kazmar, T., Stampfel, G., Yanez-Cuna, J.O., Pagani, M., Genome-scale functional characterization of Drosophila developmental enhancers in vivo (2014) Nature, 512, pp. 91-95. , 24896182
  • Pueyo, J.I., Couso, J.P., The 11-aminoacid long Tarsal-less peptides trigger a cell signal in Drosophila leg development (2008) Dev Biol, 324, pp. 192-201. , 18801356
  • Halachmi, N., Nachman, A., Salzberg, A., Visualization of proprioceptors in Drosophila larvae and pupae (2012) J Vis Exp, p. e3846. , 22733157
  • Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis (2012) Nat Methods, 9, pp. 671-675. , 22930834
  • (2017) R: A language and environment for statistical computing, , (). R Foundation for Statistical Computing
  • Gramates, L.S., Marygold, S.J., Santos, G.D., Urbano, J.M., Antonazzo, G., FlyBase at 25: looking to the future (2017) Nucleic Acids Res, 45, pp. D663-D671. , 27799470
  • Trapnell, C., Pachter, L., Salzberg, S.L., TopHat: discovering splice junctions with RNA-Seq (2009) Bioinformatics, 25, pp. 1105-1111. , 19289445
  • Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks (2012) Nat Protoc, 7, pp. 562-578. , 22383036
  • Langmead, B., Salzberg, S.L., Fast gapped-read alignment with Bowtie 2 (2012) Nat Methods, 9, pp. 357-359. , 22388286
  • Li, H., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data (2011) Bioinformatics, 27, pp. 2987-2993. , 21903627
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., The Sequence Alignment/Map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079. , 19505943
  • Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Model-based analysis of ChIP-Seq (MACS) (2008) Genome Biol, 9, p. R137. , 18798982
  • Phanstiel, D.H., Boyle, A.P., Araya, C.L., Snyder, M.P., Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures (2014) Bioinformatics, 30, pp. 2808-2810. , 24903420
  • Payre, F., Genetic control of epidermis differentiation in Drosophila (2004) Int J Dev Biol, 48, pp. 207-215. , 15272387
  • Stern, D.L., The genetic causes of convergent evolution (2013) Nat Rev Genet, 14, pp. 751-764. , 24105273

Citas:

---------- APA ----------
Kittelmann, S., Buffry, A.D., Franke, F.A., Almudi, I., Yoth, M., Sabaris, G., Couso, J.P.,..., McGregor, A.P. (2018) . Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution. PLoS Genetics, 14(5).
http://dx.doi.org/10.1371/journal.pgen.1007375
---------- CHICAGO ----------
Kittelmann, S., Buffry, A.D., Franke, F.A., Almudi, I., Yoth, M., Sabaris, G., et al. "Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution" . PLoS Genetics 14, no. 5 (2018).
http://dx.doi.org/10.1371/journal.pgen.1007375
---------- MLA ----------
Kittelmann, S., Buffry, A.D., Franke, F.A., Almudi, I., Yoth, M., Sabaris, G., et al. "Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution" . PLoS Genetics, vol. 14, no. 5, 2018.
http://dx.doi.org/10.1371/journal.pgen.1007375
---------- VANCOUVER ----------
Kittelmann, S., Buffry, A.D., Franke, F.A., Almudi, I., Yoth, M., Sabaris, G., et al. Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution. PLoS Genet. 2018;14(5).
http://dx.doi.org/10.1371/journal.pgen.1007375