Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant’s life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues. © 2016 Sánchez-Lamas et al.

Registro:

Documento: Artículo
Título:Bottom-up Assembly of the Phytochrome Network
Autor:Sánchez-Lamas, M.; Lorenzo, C.D.; Cerdán, P.D.
Filiación:Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:phytochrome; phytochrome A; phytochrome B; phytochrome C; phytochrome D; phytochrome E; unclassified drug; apoprotein; Arabidopsis protein; PHYA protein, Arabidopsis; PHYB protein, Arabidopsis; PHYD protein, Arabidopsis; PHYE protein, Arabidopsis; phytochrome; phytochrome C, Arabidopsis; Article; cellular distribution; controlled study; environmental temperature; flowering; gene regulatory network; genotype; germination; molecular interaction; nonhuman; photoperiodicity; sensitivity analysis; signal transduction; temperature dependence; Arabidopsis; genetics; growth, development and aging; light; metabolism; plant leaf; seedling; temperature; Apoproteins; Arabidopsis; Arabidopsis Proteins; Genotype; Germination; Light; Phytochrome; Phytochrome A; Phytochrome B; Plant Leaves; Seedlings; Signal Transduction; Temperature
Año:2016
Volumen:12
Número:11
DOI: http://dx.doi.org/10.1371/journal.pgen.1006413
Título revista:PLoS Genetics
Título revista abreviado:PLoS Genet.
ISSN:15537390
CAS:phytochrome, 117102-58-6; Apoproteins; Arabidopsis Proteins; PHYA protein, Arabidopsis; PHYB protein, Arabidopsis; PHYD protein, Arabidopsis; PHYE protein, Arabidopsis; Phytochrome; Phytochrome A; Phytochrome B; phytochrome C, Arabidopsis
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15537390_v12_n11_p_SanchezLamas

Referencias:

  • Casal, J.J., Photoreceptor signaling networks in plant responses to shade (2013) Annu Rev Plant Biol, 64, pp. 403-427. , 10.1146/annurev-arplant-050312-120221, 23373700,.;: –
  • Franklin, K.A., Quail, P.H., Phytochrome functions in Arabidopsis development (2010) J Exp Bot, 61 (1), pp. 11-24. , 10.1093/jxb/erp304, 19815685,.;: –
  • Christie, J.M., Blackwood, L., Petersen, J., Sullivan, S., Plant Flavoprotein Photoreceptors (2014) Plant Cell Physiol
  • Rockwell, N.C., Su, Y.S., Lagarias, J.C., Phytochrome structure and signaling mechanisms (2006) Annu Rev Plant Biol, 57, pp. 837-858. , 10.1146/annurev.arplant.56.032604.144208, 16669784,.;: –
  • Ballare, C.L., Scopel, A.L., Sanchez, R.A., Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies (1990) Science, 247 (4940), pp. 329-332. , 10.1126/science.247.4940.329, 17735851,.;: –
  • Arana, M.V., Sanchez-Lamas, M., Strasser, B., Ibarra, S.E., Cerdan, P.D., Botto, J.F., Functional diversity of phytochrome family in the control of light and gibberellin-mediated germination in Arabidopsis (2014) Plant Cell Environ, 37 (9), pp. 2014-2023. , 10.1111/pce.12286, 24471455,..;: –
  • Seo, M., Nambara, E., Choi, G., Yamaguchi, S., Interaction of light and hormone signals in germinating seeds (2009) Plant Mol Biol, 69 (4), pp. 463-472. , 10.1007/s11103-008-9429-y, 19031046,.;: –
  • de Wit, M., Lorrain, S., Fankhauser, C., Auxin-mediated plant architectural changes in response to shade and high temperature (2014) Physiol Plant, 151 (1), pp. 13-24. , 10.1111/ppl.12099, 24011166,.;: –
  • Fankhauser, C., Chen, M., Transposing phytochrome into the nucleus (2008) Trends Plant Sci, 13 (11), pp. 596-601. , 10.1016/j.tplants.2008.08.007, 18824397,.;: –
  • Hu, W., Franklin, K.A., Sharrock, R.A., Jones, M.A., Harmer, S.L., Lagarias, J.C., Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis (2013) Proc Natl Acad Sci U S A, 110 (4), pp. 1542-1547. , 10.1073/pnas.1221738110, 23302690,.;: –
  • Devlin, P.F., Patel, S.R., Whitelam, G.C., Phytochrome E influences internode elongation and flowering time in Arabidopsis (1998) Plant Cell, 10 (9), pp. 1479-1487. , 9724694,.;: –
  • Devlin, P.F., Robson, P.R., Patel, S.R., Goosey, L., Sharrock, R.A., Whitelam, G.C., Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time (1999) Plant Physiol, 119 (3), pp. 909-915. , 10069829,.;: –
  • Halliday, K.J., Whitelam, G.C., Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE (2003) Plant Physiol, 131 (4), pp. 1913-1920. , 10.1104/pp.102.018135, 12692350,.;: –
  • Franklin, K.A., Praekelt, U., Stoddart, W.M., Billingham, O.E., Halliday, K.J., Whitelam, G.C., Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis (2003) Plant Physiol, 131 (3), pp. 1340-1346. , 10.1104/pp.102.015487, 12644683,.;: –
  • Monte, E., Alonso, J.M., Ecker, J.R., Zhang, Y., Li, X., Young, J., Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways (2003) Plant Cell, 15 (9), pp. 1962-1980. , 10.1105/tpc.012971, 12953104,..;: –
  • Osugi, A., Itoh, H., Ikeda-Kawakatsu, K., Takano, M., Izawa, T., Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice (2011) Plant Physiol, 157 (3), pp. 1128-1137. , 10.1104/pp.111.181792, 21880933,.;: –
  • Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M., Chory, J., Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development (1993) Plant Cell, 5 (2), pp. 147-157. , 10.1105/tpc.5.2.147, 8453299,.;: –
  • Casal, J.J., Candia, A.N., Sellaro, R., Light perception and signalling by phytochrome A (2014) J Exp Bot, 65 (11), pp. 2835-2845. , 10.1093/jxb/ert379, 24220656,.;: –
  • Hennig, L., Stoddart, W.M., Dieterle, M., Whitelam, G.C., Schafer, E., Phytochrome E controls light-induced germination of Arabidopsis (2002) Plant Physiol, 128 (1), pp. 194-200. , 11788765,.;: –
  • Sharrock, R.A., Clack, T., Heterodimerization of type II phytochromes in Arabidopsis (2004) Proc Natl Acad Sci U S A, 101 (31), pp. 11500-11505. , 10.1073/pnas.0404286101, 15273290,.;: –
  • Clack, T., Shokry, A., Moffet, M., Liu, P., Faul, M., Sharrock, R.A., Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor (2009) Plant Cell, 21 (3), pp. 786-799. , 10.1105/tpc.108.065227, 19286967,.;: –
  • Adam, E., Kircher, S., Liu, P., Merai, Z., Gonzalez-Schain, N., Horner, M., Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red light-induced signaling (2013) New Phytol, 200 (1), pp. 86-96. , 10.1111/nph.12364, 23772959,..;: –
  • Qin, M., Kuhn, R., Moran, S., Quail, P.H., Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion (1997) Plant J, 12 (5), pp. 1163-1172. , 9418054,.;: –
  • Sharrock, R.A., Clack, T., Goosey, L., Signaling activities among the Arabidopsis phyB/D/E-type phytochromes: a major role for the central region of the apoprotein (2003) Plant J, 34 (3), pp. 317-326. , 12713538,.;: –
  • Sharrock, R.A., Clack, T., Goosey, L., Differential activities of the Arabidopsis phyB/D/E phytochromes in complementing phyB mutant phenotypes (2003) Plant Mol Biol, 52 (1), pp. 135-142. , 12825695,.;: –
  • Coen, E.S., Meyerowitz, E.M., The war of the whorls: genetic interactions controlling flower development (1991) Nature, 353 (6339), pp. 31-37. , 10.1038/353031a0, 1715520,.;: –
  • Hirschfeld, M., Tepperman, J.M., Clack, T., Quail, P.H., Sharrock, R.A., Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies (1998) Genetics, 149 (2), pp. 523-535. , 9611171,.;: –
  • Cerdan, P.D., Chory, J., Regulation of flowering time by light quality (2003) Nature, 423 (6942), pp. 881-885. , 10.1038/nature01636, 12815435,.;: –
  • Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G., Photoreceptor regulation of CONSTANS protein in photoperiodic flowering (2004) Science, 303 (5660), pp. 1003-1006. , 10.1126/science.1091761, 14963328,.;: –
  • Xie, X., Kagawa, T., Takano, M., The phytochrome B/phytochrome C heterodimer is necessary for phytochrome C-mediated responses in rice seedlings (2014) PLoS One, 9 (5), p. e97264. , 10.1371/journal.pone.0097264, 24853557,.;:
  • Sharrock, R.A., Clack, T., Patterns of expression and normalized levels of the five Arabidopsis phytochromes (2002) Plant Physiol, 130 (1), pp. 442-456. , 10.1104/pp.005389, 12226523,.;: –
  • Somers, D.E., Quail, P.H., Phytochrome-Mediated Light Regulation of PHYA- and PHYB-GUS Transgenes in Arabidopsis thaliana Seedlings (1995) Plant Physiol, 107 (2), pp. 523-534. , 12228380,.;: –
  • Kirchenbauer, D., Viczian, A., Adam, E., Hegedus, Z., Klose, C., Leppert, M., Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-A expressed in different tissues (2016) New Phytol
  • Klose, C., Viczian, A., Kircher, S., Schafer, E., Nagy, F., Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors (2015) New Phytol, 206 (3), pp. 965-971. , 10.1111/nph.13207, 26042244,.;: –
  • Rausenberger, J., Hussong, A., Kircher, S., Kirchenbauer, D., Timmer, J., Nagy, F., An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology (2010) PLoS One, 5 (5), p. e10721. , 10.1371/journal.pone.0010721, 20502669,..;:
  • Trupkin, S.A., Legris, M., Buchovsky, A.S., Tolava Rivero, M.B., Casal, J.J., Phytochrome B Nuclear Bodies Respond to the Low Red to Far-Red Ratio and to the Reduced Irradiance of Canopy Shade in Arabidopsis (2014) Plant Physiol, 165 (4), pp. 1698-1708. , 10.1104/pp.114.242438, 24948827,.;: –
  • Van Buskirk, E.K., Reddy, A.K., Nagatani, A., Chen, M., Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark (2014) Plant Physiol, 165 (2), pp. 595-607. , 10.1104/pp.114.236661, 24769533,.;: –
  • Rugnone, M.L., Faigon Soverna, A., Sanchez, S.E., Schlaen, R.G., Hernando, C.E., Seymour, D.K., LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator (2013) Proc Natl Acad Sci U S A, 110 (29), pp. 12120-12125. , 10.1073/pnas.1302170110, 23818596,..;: –
  • Wang, Z.Y., Tobin, E.M., Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression (1998) Cell, 93 (7), pp. 1207-1217. , 9657153,.;: –
  • Franklin, K.A., Davis, S.J., Stoddart, W.M., Vierstra, R.D., Whitelam, G.C., Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis (2003) Plant Cell, 15 (9), pp. 1981-1989. , 10.1105/tpc.015164, 12953105,.;: –
  • Halliday, K.J., Salter, M.G., Thingnaes, E., Whitelam, G.C., Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT (2003) Plant J, 33 (5), pp. 875-885. , 12609029,.;: –
  • Strasser, B., Sanchez-Lamas, M., Yanovsky, M.J., Casal, J.J., Cerdan, P.D., Arabidopsis thaliana life without phytochromes (2010) Proc Natl Acad Sci U S A, 107 (10), pp. 4776-4781. , 10.1073/pnas.0910446107, 20176939,.;: –
  • Chen, A., Li, C., Hu, W., Lau, M.Y., Lin, H., Rockwell, N.C., Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod (2014) Proc Natl Acad Sci U S A, 111 (28), pp. 10037-10044. , 10.1073/pnas.1409795111, 24961368,..;: –
  • Ishikawa, R., Aoki, M., Kurotani, K., Yokoi, S., Shinomura, T., Takano, M., Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice (2011) Mol Genet Genomics, 285 (6), pp. 461-470. , 10.1007/s00438-011-0621-4, 21512732,..;: –
  • Zheng, Z.L., Yang, Z., Jang, J.C., Metzger, J.D., Phytochromes A1 and B1 have distinct functions in the photoperiodic control of flowering in the obligate long-day plant Nicotiana sylvestris (2006) Plant Cell Environ, 29 (9), pp. 1673-1685. , 10.1111/j.1365-3040.2006.01538.x, 16913858,.;: –
  • Palecanda, L., Sharrock, R.A., Molecular and phenotypic specificity of an antisense PHYB gene in Arabidopsis (2001) Plant Mol Biol, 46 (1), pp. 89-97. , 11437253,.;: –
  • Krall, L., Reed, J.W., The histidine kinase-related domain participates in phytochrome B function but is dispensable (2000) Proc Natl Acad Sci U S A, 97 (14), pp. 8169-8174. , 10.1073/pnas.140520097, 10869441,.;: –
  • Wollenberg, A.C., Strasser, B., Cerdan, P.D., Amasino, R.M., Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering (2008) Plant Physiol, 148 (3), pp. 1681-1694. , 10.1104/pp.108.125468, 18790998,.;: –
  • Balasubramanian, S., Sureshkumar, S., Agrawal, M., Michael, T.P., Wessinger, C., Maloof, J.N., The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana (2006) Nat Genet, 38 (6), pp. 711-715. , 10.1038/ng1818, 16732287,..;: –
  • Woods, D.P., Ream, T.S., Minevich, G., Hobert, O., Amasino, R.M., PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon (2014) Genetics, 198 (1), pp. 397-408. , 10.1534/genetics.114.166785, 25023399,.;: –
  • Nishida, H., Ishihara, D., Ishii, M., Kaneko, T., Kawahigashi, H., Akashi, Y., Phytochrome C is a key factor controlling long-day flowering in barley (2013) Plant Physiol, 163 (2), pp. 804-814. , 10.1104/pp.113.222570, 24014575,..;: –
  • Salome, P.A., Michael, T.P., Kearns, E.V., Fett-Neto, A.G., Sharrock, R.A., McClung, C.R., The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis (2002) Plant Physiol, 129 (4), pp. 1674-1685. , 10.1104/pp.003418, 12177480,.;: –
  • Strasser, B., Alvarez, M.J., Califano, A., Cerdan, P.D., A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature (2009) Plant J, 58 (4), pp. 629-640. , 10.1111/j.1365-313X.2009.03811.x, 19187043,.;: –
  • Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alos, E., Alvey, E., Harberd, N.P., Transcription factor PIF4 controls the thermosensory activation of flowering (2012) Nature, 484 (7393), pp. 242-245. , 10.1038/nature10928, 22437497,..;: –
  • Lee, J.H., Ryu, H.S., Chung, K.S., Pose, D., Kim, S., Schmid, M., Regulation of temperature-responsive flowering by MADS-box transcription factor repressors (2013) Science, 342 (6158), pp. 628-632. , 10.1126/science.1241097, 24030492,..;: –
  • Pose, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G.C., Temperature-dependent regulation of flowering by antagonistic FLM variants (2013) Nature, 503 (7476), pp. 414-417. , 10.1038/nature12633, 24067612,..;: –
  • Inigo, S., Giraldez, A.N., Chory, J., Cerdan, P.D., Proteasome-mediated turnover of Arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription (2012) Plant Physiol, 160 (3), pp. 1662-1673. , 10.1104/pp.112.205500, 22992513,.;: –
  • Folta, K.M., Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays (2006) Nat. Protoc, 1, pp. 3094-3100. , 10.1038/nprot.2006.471, 17406505,..., –

Citas:

---------- APA ----------
Sánchez-Lamas, M., Lorenzo, C.D. & Cerdán, P.D. (2016) . Bottom-up Assembly of the Phytochrome Network. PLoS Genetics, 12(11).
http://dx.doi.org/10.1371/journal.pgen.1006413
---------- CHICAGO ----------
Sánchez-Lamas, M., Lorenzo, C.D., Cerdán, P.D. "Bottom-up Assembly of the Phytochrome Network" . PLoS Genetics 12, no. 11 (2016).
http://dx.doi.org/10.1371/journal.pgen.1006413
---------- MLA ----------
Sánchez-Lamas, M., Lorenzo, C.D., Cerdán, P.D. "Bottom-up Assembly of the Phytochrome Network" . PLoS Genetics, vol. 12, no. 11, 2016.
http://dx.doi.org/10.1371/journal.pgen.1006413
---------- VANCOUVER ----------
Sánchez-Lamas, M., Lorenzo, C.D., Cerdán, P.D. Bottom-up Assembly of the Phytochrome Network. PLoS Genet. 2016;12(11).
http://dx.doi.org/10.1371/journal.pgen.1006413