Artículo

Álvarez-Fernández, C.; Tamirisa, S.; Prada, F.; Chernomoretz, A.; Podhajcer, O.; Blanco, E.; Martín-Blanco, E. "Identification and Functional Analysis of Healing Regulators in Drosophila" (2015) PLoS Genetics. 11(2):1-32
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response. © 2015 Álvarez-Fernández et al.

Registro:

Documento: Artículo
Título:Identification and Functional Analysis of Healing Regulators in Drosophila
Autor:Álvarez-Fernández, C.; Tamirisa, S.; Prada, F.; Chernomoretz, A.; Podhajcer, O.; Blanco, E.; Martín-Blanco, E.
Filiación:Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas. Parc Cientific de Barcelona, Barcelona, Spain
Terapia Molecular y Celular, Fundación Instituto Leloir, Buenos Aires, Argentina
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Departament de Genètica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
Laboratory of Oncological Hematology and Transplantation, Institute of Biomedical Research, IIB Sant Pau, Barcelona, Spain and Department of Hematology, Hospital Santa Creu i Sant Pau, Barcelona, Spain
Departamento de Biotecnología y Tecnología Alimentaria, UADE, Lima, Buenos Aires, Argentina
Palabras clave:chaperonin containing TCP1; actin; stress activated protein kinase; actin filament; adult; animal cell; animal tissue; arc1 gene; Article; chemical analysis; controlled study; Drosophila; female; gene; gene expression profiling; gene function; gene identification; gene overexpression; gene product; genetic analysis; in vitro study; male; nonhuman; nucleotide sequence; PDGF gene; rho1 gene; serpin55B gene; tissue repair; VEGF gene; wound healing; animal; cytoskeleton; Drosophila melanogaster; epithelium; gene expression regulation; genetics; growth, development and aging; human; imaginal disc; insect genome; metabolism; pathology; regeneration; signal transduction; thorax; wound healing; Mammalia; Murinae; Actins; Animals; Cytoskeleton; Drosophila melanogaster; Epithelium; Gene Expression Regulation; Genome, Insect; Humans; Imaginal Discs; JNK Mitogen-Activated Protein Kinases; MAP Kinase Signaling System; Regeneration; Signal Transduction; Thorax; Wound Healing
Año:2015
Volumen:11
Número:2
Página de inicio:1
Página de fin:32
DOI: http://dx.doi.org/10.1371/journal.pgen.1004965
Título revista:PLoS Genetics
Título revista abreviado:PLoS Genet.
ISSN:15537390
CAS:stress activated protein kinase, 155215-87-5; Actins; JNK Mitogen-Activated Protein Kinases
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15537390_v11_n2_p1_AlvarezFernandez

Referencias:

  • Martin, P., Parkhurst, S.M., Parallels between tissue repair and embryo morphogenesis (2004) Development, 131, pp. 3021-3034
  • Harden, N., Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila (2002) Differentiation, 70, pp. 181-203
  • Wood, W., Jacinto, A., Grose, R., Woolner, S., Gale, J., Wound healing recapitulates morphogenesis in Drosophila embryos (2002) Nature Cell Biology, 4, pp. 907-912
  • Martin, P., Wound healing--aiming for perfect skin regeneration (1997) Science, 276, pp. 75-81
  • McCluskey, J., Martin, P., Analysis of the tissue movements of embryonic wound healing--DiI studies in the limb bud stage mouse embryo (1995) Developmental Biology, 170, pp. 102-114
  • Martin, P., Lewis, J., Actin cables and epidermal movement in embryonic wound healing (1992) Nature, 360, pp. 179-183
  • Martin-Blanco, E., Pastor-Pareja, J.C., Garcia-Bellido, A., JNK and decapentaplegic signaling control adhesiveness and cytoskeleton dynamics during thorax closure in Drosophila (2000) Proc Natl Acad Sci U S A, 97, pp. 7888-7893
  • Li, G., Gustafson-Brown, C., Hanks, S.K., Nason, K., Arbeit, J.M., c-Jun is essential for organization of the epidermal leading edge (2003) Developmental Cell, 4, pp. 865-877
  • Zenz, R., Scheuch, H., Martin, P., Frank, C., Eferl, R., c-Jun regulates eyelid closure and skin tumor development through EGFR signaling (2003) Developmental Cell, 4, pp. 879-889
  • Mace, K.A., Pearson, J.C., McGinnis, W., An epidermal barrier wound repair pathway in Drosophila is mediated by grainy head (2005) Science, 308, pp. 381-385
  • Galko, M.J., Krasnow, M.A., Cellular and genetic analysis of wound healing in Drosophila larvae (2004) PLoS biology, 2, p. 239
  • Ramet, M., Lanot, R., Zachary, D., Manfruelli, P., JNK signaling pathway is required for efficient wound healing in Drosophila (2002) Developmental Biology, 241, pp. 145-156
  • Bosch, M., Serras, F., Martin-Blanco, E., Baguna, J., JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs (2005) Developmental Biology, 280, pp. 73-86
  • Bergantinos, C., Corominas, M., Serras, F., Cell death-induced regeneration in wing imaginal discs requires JNK signalling (2010) Development, 137, pp. 1169-1179
  • Nishimura, M., Kumsta, C., Kaushik, G., Diop, S.B., Ding, Y., A dual role for integrin-linked kinase and beta1-integrin in modulating cardiac aging (2014) Aging Cell, 13, pp. 431-440
  • Patel, U., Myat, M.M., Receptor guanylyl cyclase Gyc76C is required for invagination, collective migration and lumen shape in the Drosophila embryonic salivary gland (2013) Biol Open, 2, pp. 711-717
  • Agnes, F., Suzanne, M., Noselli, S., The Drosophila JNK pathway controls the morphogenesis of imaginal discs during metamorphosis (1999) Development, 126, pp. 5453-5462
  • Pastor-Pareja, J.C., Grawe, F., Martin-Blanco, E., Garcia-Bellido, A., Invasive cell behavior during Drosophila imaginal disc eversion is mediated by the JNK signaling cascade (2004) Developmental Cell, 7, pp. 387-399
  • Calleja, M., Moreno, E., Pelaz, S., Morata, G., Visualization of gene expression in living adult Drosophila (1996) Science, 274, pp. 252-255
  • Bryant, P.J., Fraser, S.E., Wound healing, cell communication, and DNA synthesis during imaginal disc regeneration in Drosophila (1988) Developmental Biology, 127, pp. 197-208
  • Schubiger, G., Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster (1971) Developmental Biology, 26, pp. 277-295
  • Frydman, J., Nimmesgern, E., Ohtsuka, K., Hartl, F.U., Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones (1994) Nature, 370, pp. 111-117
  • Brackley, K.I., Grantham, J., Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation (2009) Cell Stress Chaperones, 14, pp. 23-31
  • Reinhardt, C.A., Hodgkin, N.M., Bryant, P.J., Wound healing in the imaginal discs of Drosophila (1977) I. Scanning electron microscopy of normal and healing wing discs. Developmental Biology, 60, pp. 238-257
  • Pavlidis, P., Noble, W.S., Analysis of strain and regional variation in gene expression in mouse brain (2001) Genome biology, 2
  • Stevens, L.J., Page-McCaw, A., A secreted MMP is required for reepithelialization during wound healing (2012) Molecular Biology of the Cell, 23, pp. 1068-1079
  • Abreu-Blanco, M.T., Verboon, J.M., Parkhurst, S.M., Cell wound repair in Drosophila occurs through three distinct phases of membrane and cytoskeletal remodeling (2011) Journal of Cell Biology, 193, pp. 455-464
  • Brown, N.H., Gregory, S.L., Rickoll, W.L., Fessler, L.I., Prout, M., Talin is essential for integrin function in Drosophila (2002) Dev Cell, 3, pp. 569-579
  • Yagi, R., Ishimaru, S., Yano, H., Gaul, U., Hanafusa, H., A novel muscle LIM-only protein is generated from the paxillin gene locus in Drosophila (2001) EMBO Rep, 2, pp. 814-820
  • Sokol, N.S., Cooley, L., Drosophila filamin encoded by the cheerio locus is a component of ovarian ring canals (1999) Curr Biol, 9, pp. 1221-1230
  • Konsolaki, M., Schupbach, T., windbeutel, a gene required for dorsoventral patterning in Drosophila, encodes a protein that has homologies to vertebrate proteins of the endoplasmic reticulum (1998) Genes Dev, 12, pp. 120-131
  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Gene ontology: tool for the unification of biology (2000) The Gene Ontology Consortium. Nature genetics, 25, pp. 25-29
  • Aza-Blanc, P., Ramirez-Weber, F.A., Laget, M.P., Schwartz, C., Kornberg, T.B., Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor (1997) Cell, 89, pp. 1043-1053
  • Grantham, J., Brackley, K.I., Willison, K.R., Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells (2006) Exp Cell Res, 312, pp. 2309-2324
  • Coue, M., Brenner, S.L., Spector, I., Korn, E.D., Inhibition of actin polymerization by latrunculin A (1987) FEBS Lett, 213, pp. 316-318
  • Stramer, B., Winfield, M., Shaw, T., Millard, T.H., Woolner, S., Gene induction following wounding of wild-type versus macrophage-deficient Drosophila embryos (2008) EMBO Reports, 9, pp. 465-471
  • Blanco, E., Ruiz-Romero, M., Beltran, S., Bosch, M., Punset, A., Gene expression following induction of regeneration in Drosophila wing imaginal discs (2010) Expression profile of regenerating wing discs. BMC Dev Biol, 10, p. 94
  • Bosch, M., Baguna, J., Serras, F., Origin and proliferation of blastema cells during regeneration of Drosophila wing imaginal discs (2008) Int J Dev Biol, 52, pp. 1043-1050
  • Lee, N., Maurange, C., Ringrose, L., Paro, R., Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs (2005) Nature, 438, pp. 234-237
  • Mattila, J., Omelyanchuk, L., Kyttala, S., Turunen, H., Nokkala, S., Role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila melanogaster wing imaginal disc (2005) Int J Dev Biol, 49, pp. 391-399
  • Bergantinos, C., Vilana, X., Corominas, M., Serras, F., Imaginal discs: Renaissance of a model for regenerative biology (2010) Bioessays, 32, pp. 207-217
  • McCawley, L.J., Matrisian, L.M., Matrix metalloproteinases: they’re not just for matrix anymore! (2001) Curr Opin Cell Biol, 13, pp. 534-540
  • Werner, S., Grose, R., Regulation of wound healing by growth factors and cytokines (2003) Physiol Rev, 83, pp. 835-870
  • Singer, A., Clark, R., Cutaneous Wound Healing (1999) New England Journal of Medicine, 341, pp. 738-746
  • Braddock, M., The transcription factor Egr-1: a potential drug in wound healing and tissue repair (2001) Annals of Medicine, 33, pp. 313-318
  • Brock, J., Midwinter, K., Lewis, J., Martin, P., Healing of incisional wounds in the embryonic chick wing bud: characterization of the actin purse-string and demonstration of a requirement for Rho activation (1996) Journal of Cell Biology, 135, pp. 1097-1107
  • Su, Y.C., Treisman, J.E., Skolnik, E.Y., The Drosophila Ste20-related kinase misshapen is required for embryonic dorsal closure and acts through a JNK MAPK module on an evolutionarily conserved signaling pathway (1998) Genes & Development, 12, pp. 2371-2380
  • Stronach, B., Perrimon, N., Activation of the JNK pathway during dorsal closure in Drosophila requires the mixed lineage kinase, slipper (2002) Genes & Development, 16, pp. 377-387
  • Yin, J., Lu, J., Yu, F.S., Role of small GTPase Rho in regulating corneal epithelial wound healing (2008) Invest Ophthalmol Vis Sci, 49, pp. 900-909
  • Baek, S.H., Kwon, Y.C., Lee, H., Choe, K.M., Rho-family small GTPases are required for cell polarization and directional sensing in Drosophila wound healing (2010) Biochem Biophys Res Commun, 394, pp. 488-492
  • Zeidler, M.P., Bach, E.A., Perrimon, N., The roles of the Drosophila JAK/STAT pathway (2000) Oncogene, 19, pp. 2598-2606
  • Pastor-Pareja, J.C., Wu, M., Xu, T., An innate immune response of blood cells to tumors and tissue damage in Drosophila (2008) Dis Model Mech, 1, pp. 144-154
  • Wu, M., Pastor-Pareja, J.C., Xu, T., Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion (2010) Nature, 463, pp. 545-548
  • Adachi-Yamada, T., Fujimura-Kamada, K., Nishida, Y., Matsumoto, K., Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing (1999) Nature, 400, pp. 166-169
  • Ryoo, H.D., Gorenc, T., Steller, H., Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways (2004) Developmental Cell, 7, pp. 491-501
  • Campos, I., Geiger, J.A., Santos, A.C., Carlos, V., Jacinto, A., Genetic Screen in Drosophila melanogaster Uncovers a Novel Set of Genes Required for Embryonic Epithelial Repair (2010) Genetics, 184, pp. 129-140
  • Lesch, C., Jo, J., Wu, Y., Fish, G.S., Galko, M.J., A Targeted UAS-RNAi Screen in Drosophila Larvae Identifies Wound Closure Genes Regulating Distinct Cellular Processes (2010) Genetics, 186, pp. 943-957
  • Juarez, M.T., Patterson, R.A., Sandoval-Guillen, E., McGinnis, W., Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila (2011) PLoS Genetics, 7
  • Belacortu, Y., Paricio, N., Drosophila as a Model of Wound Healing and Tissue Regeneration in Vertebrates (2011) Developmental Dynamics, 240, pp. 2379-2404
  • Schäfer, M., Werner, S., Transcriptional Control of Wound Repair (2007) Annu Rev Cell Dev Biol, 23, pp. 69-92
  • Dean, M., Rzhetsky, A., Allikmets, R., The human ATP-binding cassette (ABC) transporter superfamily (2001) Genome Research, 11, pp. 1156-1166
  • Andersen, C.B., Becker, T., Blau, M., Anand, M., Halic, M., Structure of eEF3 and the mechanism of transfer RNA release from the E-site (2006) Nature, 443, pp. 663-668
  • Gomez-Skarmeta, J.L., Diez del Corral, R., de la Calle-Mustienes, E., Ferre-Marco, D., Modolell, J., Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes (1996) Cell, 85, pp. 95-105
  • Kankel, M.W., Hurlbut, G.D., Upadhyay, G., Yajnik, V., Yedvobnick, B., Investigating the genetic circuitry of mastermind in Drosophila, a notch signal effector (2007) Genetics, 177, pp. 2493-2505
  • Rosin, D., Schejter, E., Volk, T., Shilo, B.Z., Apical accumulation of the Drosophila PDGF/VEGF receptor ligands provides a mechanism for triggering localized actin polymerization (2004) Development, 131, pp. 1939-1948
  • Cho, N.K., Keyes, L., Johnson, E., Heller, J., Ryner, L., Developmental control of blood cell migration by the Drosophila VEGF pathway (2002) Cell, 108, pp. 865-876
  • Ishimaru, S., Ueda, R., Hinohara, Y., Ohtani, M., Hanafusa, H., PVR plays a critical role via JNK activation in thorax closure during Drosophila metamorphosis (2004) EMBO Journal, 23, pp. 3984-3994
  • McDonald, J.A., Pinheiro, E.M., Montell, D.J., PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman (2003) Development, 130, pp. 3469-3478
  • Wu, Y., Brock, A.R., Wang, Y., Fujitani, K., Ueda, R., A blood-borne PDGF/VEGF-like ligand initiates wound-induced epidermal cell migration in Drosophila larvae (2009) Current Biology, 19, pp. 1473-1477
  • Vaduva, G., Martin, N.C., Hopper, A.K., Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton (1997) J Cell Biol, 139, pp. 1821-1833
  • Jiang, W.G., Ye, L., Patel, G., Harding, K.G., Expression of WAVEs, the WASP (Wiskott-Aldrich syndrome protein) family of verprolin homologous proteins in human wound tissues and the biological influence on human keratinocytes (2010) Wound Repair Regen, 18, pp. 594-604
  • Schafer, D.A., Cooper, J.A., Control of actin assembly at filament ends (1995) Annu Rev Cell Dev Biol, 11, pp. 497-518
  • Machesky, L.M., Cooper, J.A., Cell motility (1999) Bare bones of the cytoskeleton. Nature, 401, pp. 542-543
  • Janody, F., Treisman, J.E., Actin capping protein alpha maintains vestigial-expressing cells within the Drosophila wing disc epithelium (2006) Development, 133, pp. 3349-3357
  • Ogienko, A.A., Karagodin, D.A., Lashina, V.V., Baiborodin, S.I., Omelina, E.S., Capping protein beta is required for actin cytoskeleton organisation and cell migration during Drosophila oogenesis (2013) Cell Biol Int, 37, pp. 149-159
  • Bretscher, A., Fimbrin is a cytoskeletal protein that crosslinks F-actin in vitro (1981) Proc Natl Acad Sci U S A, 78, pp. 6849-6853
  • Wu, J.Q., Bahler, J., Pringle, J.R., Roles of a fimbrin and an alpha-actinin-like protein in fission yeast cell polarization and cytokinesis (2001) Mol Biol Cell, 12, pp. 1061-1077
  • Dobie, K.W., Kennedy, C.D., Velasco, V.M., McGrath, T.L., Weko, J., Identification of chromosome inheritance modifiers in Drosophila melanogaster (2001) Genetics, 157, pp. 1623-1637
  • Sternlicht, H., Farr, G.W., Sternlicht, M.L., Driscoll, J.K., Willison, K., The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo (1993) Proc Natl Acad Sci U S A, 90, pp. 9422-9426
  • Kubota, H., Hynes, G., Willison, K., The chaperonin containing t-complex polypeptide 1 (TCP-1) (1995) Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem, 230, pp. 3-16
  • Coghlin, C., Carpenter, B., Dundas, S.R., Lawrie, L.C., Telfer, C., Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer (2006) J Pathol, 210, pp. 351-357
  • Kitamura, A., Kubota, H., Pack, C.G., Matsumoto, G., Hirayama, S., Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state (2006) Nat Cell Biol, 8, pp. 1163-1170
  • Spiess, C., Miller, E.J., McClellan, A.J., Frydman, J., Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins (2006) Mol Cell, 24, pp. 25-37
  • Satish, L., Johnson, S., Wang, J.H., Post, J.C., Ehrlich, G.D., Chaperonin containing T-complex polypeptide subunit eta (CCT-eta) is a specific regulator of fibroblast motility and contractility (2010) PLoS One, 5
  • Cole, J., Tsou, R., Wallace, K., Gibran, N., Isik, F., Early gene expression profile of human skin to injury using high-density cDNA microarrays (2001) Wound Repair & Regeneration, 9, pp. 360-370
  • Cooper, L., Johnson, C., Burslem, F., Martin, P., Wound healing and inflammation genes revealed by array analysis of “macrophageless” PU.1 null mice (2005) Genome Biol, 6, p. 5
  • Lin, G., Zhang, X., Ren, J., Pang, Z., Wang, C., Integrin signaling is required for maintenance and proliferation of intestinal stem cells in Drosophila (2013) Dev Biol, 377, pp. 177-187

Citas:

---------- APA ----------
Álvarez-Fernández, C., Tamirisa, S., Prada, F., Chernomoretz, A., Podhajcer, O., Blanco, E. & Martín-Blanco, E. (2015) . Identification and Functional Analysis of Healing Regulators in Drosophila. PLoS Genetics, 11(2), 1-32.
http://dx.doi.org/10.1371/journal.pgen.1004965
---------- CHICAGO ----------
Álvarez-Fernández, C., Tamirisa, S., Prada, F., Chernomoretz, A., Podhajcer, O., Blanco, E., et al. "Identification and Functional Analysis of Healing Regulators in Drosophila" . PLoS Genetics 11, no. 2 (2015) : 1-32.
http://dx.doi.org/10.1371/journal.pgen.1004965
---------- MLA ----------
Álvarez-Fernández, C., Tamirisa, S., Prada, F., Chernomoretz, A., Podhajcer, O., Blanco, E., et al. "Identification and Functional Analysis of Healing Regulators in Drosophila" . PLoS Genetics, vol. 11, no. 2, 2015, pp. 1-32.
http://dx.doi.org/10.1371/journal.pgen.1004965
---------- VANCOUVER ----------
Álvarez-Fernández, C., Tamirisa, S., Prada, F., Chernomoretz, A., Podhajcer, O., Blanco, E., et al. Identification and Functional Analysis of Healing Regulators in Drosophila. PLoS Genet. 2015;11(2):1-32.
http://dx.doi.org/10.1371/journal.pgen.1004965