Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. © 2012 Arneodo et al.

Registro:

Documento: Artículo
Título:Prosthetic Avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery
Autor:Arneodo, E.M.; Perl, Y.S.; Goller, F.; Mindlin, G.B.
Filiación:Laboratorio de sistemas dinámicos, Departamento de Física, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Biology, University of Utah, Salt Lake City, UT, United States
Palabras clave:animal behavior; article; auditory feedback; biomechanics; brain computer interface; finch; larynx prosthesis; mathematical computing; mathematical model; motor performance; nonhuman; nonlinear system; physiological process; sound analysis; sound pressure; speech analysis; vibration; vocal cord; vocalization; animal; animal structures; biological model; biology; biomechanics; bioprosthesis; finch; histology; human; physiology; signal processing; statistics; Animalia; Aves; Animal Structures; Animals; Behavior, Animal; Biomechanics; Bioprosthesis; Computational Biology; Finches; Humans; Models, Biological; Nonlinear Dynamics; Signal Processing, Computer-Assisted; Vocalization, Animal
Año:2012
Volumen:8
Número:6
DOI: http://dx.doi.org/10.1371/journal.pcbi.1002546
Título revista:PLoS Computational Biology
Título revista abreviado:PLoS Comput. Biol.
ISSN:1553734X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1553734X_v8_n6_p_Arneodo

Referencias:

  • Zeigler, P., Marler, P., (2004) Neuroscience of Birdsong, , Cambridge, Massachusetts, Cambridge University press
  • Mindlin, G., Laje, R., (2005) The Physics of Birdsong, , Springer
  • Doupe, A.J., Kuhl, P.K., Birdsong and human speech: Common themes and mechanisms (1999) Annu Rev Neurosci, 22, pp. 567-631
  • Gardner, T., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., Simple motor gestures for birdsongs (2001) Phys Rev Lett, 87, p. 208101
  • Sitt, J.D., Amador, A., Goller, F., Mindlin, G.B., Dynamical origin of spectrally rich vocalizations in birdsong (2008) Phys Rev E Stat Nonlin Soft Matter Phys, 78, p. 011905
  • Zollinger, S.A., Suthers, R.A., Motor mechanisms of a vocal mimic: implications for birdsong production (2004) Proc Biol Sci, 271, pp. 483-491
  • Zollinger, S.A., Riede, T., Suthers, R.A., Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations (2008) J Exp Biol, 211, pp. 1978-1991
  • Arneodo, E.M., Mindlin, G.B., Source-tract coupling in birdsong production (2009) Phys Rev E, 79, p. 061921
  • Arneodo, E.M., Perl, Y.S., Mindlin, G.B., Acoustic signatures of sound source-tract coupling (2011) Phys Rev E, 83, p. 041920
  • Ishizaka, K., Flanagan, J., (1973) Synthesis of Voiced Sounds from a Two-Mass Model of the Vocal Cords, , Dowden Hutchinson and Ross
  • Laje, R., Gardner, T.J., Mindlin, G.B., Neuromuscular control of vocalizations in birdsong: A model (2002) Phys Rev E, 65, p. 051921
  • Titze, I.R., The physics of small-amplitude oscillation of the vocal folds (1988) J Acoust Soc Am, 83, pp. 1536-1552
  • Sitt, J.D., Arneodo, E.M., Goller, F., Mindlin, G.B., Physiologically driven avian vocal synthesizer (2010) Phys Rev E, 81, p. 031927
  • Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., Reconstruction of physiological instructions from zebra finch song (2011) Phys Rev E, 84, p. 051909
  • Schwartz, A., Cui, X., Weber, D., Moran, D., Brain-controlled interfaces: movement restoration with neural prosthetics (2006) Neuron, 52, pp. 205-220
  • Cichocki, A., Washizawa, Y., Rutkowski, T., Bakardjian, H., Phan, A.H., Noninvasive bcis: Multiway signal-processing array decompositions (2008) Computer, 41, pp. 34-42
  • Carmena, J., Lebedev, M., Crist, R., O'Doherty, J., Santucci, D., Learning to control a brain-machine interface for reaching and grasping by primates (2003) PLoS Biol, 1, pp. e42
  • Parra, L., Spence, C., Convolutive blind separation of non-stationary sources (2000) IEEE T Speech Audi P, 8, pp. 320-327
  • Larsen, O.N., Goller, F., Role of syringeal vibrations in bird vocalizations (1999) Proc Biol Sci, 266, p. 1609
  • Goller, F., Larsen, O.N., A new mechanism of sound generation in songbirds (1997) Proc Natl Acad Sci U S A, 94, pp. 14787-14791
  • Nowicki, S., Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere (1987) Nature, 325, pp. 53-55
  • Riede, T., Suthers, R.A., Fletcher, N.H., Blevins, W.E., Songbirds tune their vocal tract to the fundamental frequency of their song (2006) Proc Natl Acad Sci U S A, 103, pp. 5543-5548
  • Assaneo, M.F., Trevisan, M.A., Computational model for vocal tract dynamics in a suboscine bird (2010) Phys Rev E, 82, p. 031906
  • Fletcher, N.H., Riede, T., Suthers, R.A., Model for vocalization by a bird with distensible vocal cavity and open beak (2006) J Acoust Soc Am, 119, pp. 1005-1011
  • Fee, M.S., Shraiman, B., Pesaran, B., Mitra, P.P., The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird (1998) Nature, 395, pp. 67-71
  • Titze, I., (2000) Principles of Voice Production, , National Center for Voice and Speech
  • Coppens, A., Frey, A., Kinsler, L., Sanders, J., Fundamentals of acoustics (1982); Amador, A., Mindlin, G.B., Beyond harmonic sounds in a simple model for birdsong production (2008) Chaos, 18, p. 043123
  • Goller, F., Cooper, B.G., Peripheral motor dynamics of song production in the zebra finch (2004) Ann N Y Acad Sci, 1016, pp. 130-152
  • Strogatz, S.H., (2000) Nonlinear Dynamics and Chaos, , Cambridge, Massachusetts, Perseus Publishing
  • Guckenheimer, J., Holmes, P., (1983) Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields, , New York Berlin Heidelberg Tokyo, Springer-Verlag
  • Brainard, M.S., Doupe, A.J., Auditory feedback in learning and maintenance of vocal behaviour (2000) Nat Rev Neurosci, 1, pp. 31-40
  • Cooper, B.G., Goller, F., Partial muting leads to age-dependent modi_cation of motor patterns underlying crystallized zebra finch song (2004) J Neurobiol, 61, pp. 317-332
  • Sakata, J., Brainard, M., Real-time contributions of auditory feedback to avian vocal motor control (2006) J Neurosci, 26, pp. 9619-9628
  • Darmanjian, S., Cieslewski, G., Morrison, S., Dang, B., Gugel, K., A recon-figurable neural signal processor (nsp) for brain machine interfaces (2006) 28th Annual International Conference of the IEEE, pp. 2502-2505. , In: Engineering in Medicine and Biology Society, 2006
  • Chapin, J., Moxon, K., Markowitz, R., Nicolelis, M., Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex (1999) Nat Neurosci, 2, pp. 664-670

Citas:

---------- APA ----------
Arneodo, E.M., Perl, Y.S., Goller, F. & Mindlin, G.B. (2012) . Prosthetic Avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery. PLoS Computational Biology, 8(6).
http://dx.doi.org/10.1371/journal.pcbi.1002546
---------- CHICAGO ----------
Arneodo, E.M., Perl, Y.S., Goller, F., Mindlin, G.B. "Prosthetic Avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery" . PLoS Computational Biology 8, no. 6 (2012).
http://dx.doi.org/10.1371/journal.pcbi.1002546
---------- MLA ----------
Arneodo, E.M., Perl, Y.S., Goller, F., Mindlin, G.B. "Prosthetic Avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery" . PLoS Computational Biology, vol. 8, no. 6, 2012.
http://dx.doi.org/10.1371/journal.pcbi.1002546
---------- VANCOUVER ----------
Arneodo, E.M., Perl, Y.S., Goller, F., Mindlin, G.B. Prosthetic Avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery. PLoS Comput. Biol. 2012;8(6).
http://dx.doi.org/10.1371/journal.pcbi.1002546