Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100-500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a "router" network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates. © 2010 Zylberberg et al.

Registro:

Documento: Artículo
Título:The brain's router: A cortical network model of serial processing in the primate brain
Autor:Zylberberg, A.; Slezak, D.F.; Roelfsema, P.R.; Dehaene, S.; Sigman, M.
Filiación:Laboratory of Integrative Neuroscience, Physics Department, University of Buenos Aires, Buenos Aires, Argentina
Institute of Biomedical Engineering, Faculty of Engineering, University of Buenos Aires, Buenos Aires, Argentina
Laboratory of Complex Systems, Computer Science Department, University of Buenos Aires, Buenos Aires, Argentina
Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
Department of Integrative Neurophysiology, Vrije Universiteit, Amsterdam, Netherlands
INSERM, CEA, Cognitive Neuroimaging Unit, Orsay, France
Collège de France, Paris, France
Palabras clave:AMPA receptor; n methyl dextro aspartic acid receptor; animal behavior; article; brain function; cognition; controlled study; information processing; mathematical analysis; motivation; motor performance; nerve cell; nerve cell network; prediction; primate; process model; response time; sensory stimulation; spike wave; task performance; action potential; analysis of variance; attentional blink; biological model; brain cortex; human; nerve cell network; physiology; reaction time; statistics; Primates; Action Potentials; Analysis of Variance; Attentional Blink; Cerebral Cortex; Cognition; Humans; Models, Neurological; Nerve Net; Reaction Time; Stochastic Processes; Task Performance and Analysis
Año:2010
Volumen:6
Número:4
DOI: http://dx.doi.org/10.1371/journal.pcbi.1000765
Título revista:PLoS Computational Biology
Título revista abreviado:PLoS Comput. Biol.
ISSN:1553734X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1553734X_v6_n4_p_Zylberberg

Referencias:

  • Roelfsema, P.R., Lamme, V.A., Spekreijse, H., The implementation of visual routines (2000) Vision Res, 40, pp. 1385-1411
  • Ullman, S., Visual routines (1984) Cognition, 18, pp. 97-159
  • Anderson, J.R., Lebiere, C., (1998) The Atomic Components of Thought, , Mahwah, NJ: Lawrence Erlbaum Associates
  • Pashler, H., Processing stages in overlapping tasks: Evidence for a central bottleneck (1984) J Exp Psychol Hum Percept Perform, 10, pp. 358-377
  • Raymond, J.E., Shapiro, K.L., Arnell, K.M., Temporary suppression of visual processing in an RSVP task: An attentional blink? (1992) J Exp Psychol Hum Percept Perform, 18, pp. 849-860
  • Smith, M.C., Theories of the psychological refractory period (1967) PsychBull, 67, pp. 202-213
  • Telford, C.W., The refractory phase of voluntary and associative responses (1931) JExpPsych, 14, pp. 1-36
  • Wylie, G., Allport, A., Task switching and the measurement of "switch costs" (2000) Psychol Res, 63, pp. 212-233
  • Baddeley, A.D., (1986) Working Memory, , Oxford: Clarendon Press
  • Chun, M.M., Potter, M.C., A two-stage model for multiple target detection in rapid serial visual presentation (1995) J Exp Psychol Hum Percept Perform, 21, pp. 109-127
  • Posner, M.I., Dehaene, S., Attentional networks (1994) Trends Neurosci, 17, pp. 75-79
  • Shallice, T., (1988) From Neuropsychology to Mental Structure, , Cambridge: Cambridge University Press
  • Shallice, T., Burgess, P., The domain of supervisory processes and temporal organization of behaviour (1996) Philos Trans R Soc Lond B Biol Sci, 351, pp. 1405-1411. , discussion 1411-1402
  • Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., An integrated theory of the mind (2004) Psychol Rev, 111, pp. 1036-1060
  • Roelfsema, P.R., Elemental operations in vision (2005) Trends in Cognitive Sciences, 9, pp. 226-233
  • Pashler, H., Luck, S.J., Hillyard, S.A., Mangun, G.R., O'Brien, S., Sequential operation of disconnected cerebral hemispheres in split-brain patients (1994) Neuroreport, 5, pp. 2381-2384
  • Pashler, H., Johnston, J.C., (1998) Attentional Limitations in Dual-task Performance, pp. 155-189. , In: Pashler H, ed. Attention. Hove: Psychology Pres/erlbaum
  • Sigman, M., Dehaene, S., Parsing a Cognitive Task: A Characterization of the Mind's Bottleneck (2005) PLoS Biol, 3, pp. e37
  • Kamienkowski, J.E., Sigman, M., Delays without Mistakes: Response Time and Error Distributions in Dual-Task (2008) PLoS One, p. 3
  • Luce, R.D., (1986) Response Times, , New York: Oxford University Press
  • Mazurek, M.E., Roitman, J.D., Ditterich, J., Shadlen, M.N., A role for neural integrators in perceptual decision making (2003) Cereb Cortex, 13, pp. 1257-1269
  • Ratcliff, R., A diffusion model account of response time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data (2002) Psychon Bull Rev, 9, pp. 278-291
  • Smith, P.L., Ratcliff, R., Psychology and neurobiology of simple decisions (2004) Trends Neurosci, 27, pp. 161-168
  • Meyer, D.E., Kieras, D.E., A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms (1997) Psychol Rev, 104, pp. 3-65
  • Byrne, M.D., Anderson, J.R., Serial modules in parallel: The psychological refractory period and perfect time-sharing (2001) Psychol Rev, 108, pp. 847-869
  • Shadlen, M.N., Newsome, W.T., Motion perception: Seeing and deciding (1996) Proc Natl Acad Sci U S A, 93, pp. 628-633
  • Romo, R., Hernandez, A., Salinas, E., Brody, C.D., Zainos, A., From sensation to action (2002) Behav Brain Res, 135, pp. 105-118
  • Allport, A., Patterns and Actions (1980) Cognitive Psychology: New Directions, pp. 26-64. , In: Claxton G, ed., London: Rutledge & Kegan Paul
  • Allport, A., Selection for action: Some behavioral and neurophysiological considerations of attention and action (1987) Perspectives on Perception and Action, pp. 395-419. , In: Heuer H, Sanders AF, eds., Hillsdale, NJ: Erlbaum
  • Pouget, A., Snyder, L.H., Computational approaches to sensorimotor transformations (2000) Nat Neurosci, 3 (SUPPL.), pp. 1192-1198
  • Fusi, S., Asaad, W.F., Miller, E.K., Wang, X.J., A neural circuit model of flexible sensorimotor mapping: Learning and forgetting on multiple timescales (2007) Neuron, 54, pp. 319-333
  • Rougier, N.P., Noelle, D.C., Braver, T.S., Cohen, J.D., O'Reilly, R.C., Prefrontal cortex and flexible cognitive control: Rules without symbols (2005) Proceedings of the National Academy of Sciences, 102, pp. 7338-7343
  • Salinas, E., Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation (2004) J Neurosci, 24, pp. 1113-1118
  • Pashler, H., Dual-task interference in simple tasks: Data and theory (1994) Psychol Bull, 116, pp. 220-244
  • Pashler, H., Johnston, J.C., Chronometric evidence for central postponement in temporally overlapping tasks (1989) The Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 41 A, pp. 19-45
  • Brunel, N., Wang, X.J., Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition (2001) Journal of Computational Neuroscience, 11, pp. 63-85
  • Wang, X.J., Probabilistic Decision Making by Slow Reverberation in Cortical Circuits (2002) Neuron, 36, pp. 955-968
  • Deco, G., Rolls, E.T., Attention, short-term memory, and action selection: A unifying theory (2005) Prog Neurobiol, 76, pp. 236-256
  • Burkhalter, A., Development of forward and feedback connections between areas V1 and V2 of human visual cortex (1993) Cerebral Cortex, 3, pp. 476-487
  • Rockland, K.S., Saleem, K.S., Tanaka, K., Divergent feedback connections from areas V4 and TEO in the macaque (1994) Vis Neurosci, 11, pp. 579-600
  • Stettler, D.D., Das, A., Bennett, J., Gilbert, C.D., Lateral connectivity and contextual interactions in macaque primary visual cortex (2002) Neuron, 36, pp. 739-750
  • Felleman, D.J., van Essen, D.C., Distributed hierarchical processing in the primate cerebral cortex (1991) Cereb Cortex, 1, pp. 1-47
  • Dehaene, S., Sergent, C., Changeux, J.P., A neuronal network model linking subjective reports and objective physiological data during conscious perception (2003) Proc Natl Acad Sci U S A, 100, pp. 8520-8525
  • Lo, C.C., Wang, X.J., Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks (2006) Nature Neuroscience, 9, pp. 956-963
  • Cohen, J.D., Dunbar, K., McClelland, J.L., On the control of automatic processes: A parallel distributed processing account of the Stroop effect (1990) Psychol Rev, 97, pp. 332-361
  • Stemme, A., Deco, G., Busch, A., The neuronal dynamics underlying cognitive flexibility in set shifting tasks (2007) J Comput Neurosci, 23, pp. 313-331
  • Deco, G., Rolls, E.T., Attention and working memory: A dynamical model of neuronal activity in the prefrontal cortex (2003) European Journal of Neuroscience, 18, p. 2374
  • Posner, M.I., Cohen, Y., Components of visual orienting (1984) Attention and Performance, pp. 531-556
  • Dehaene, S., Changeux, J.P., A hierarchical neuronal network for planning behavior (1997) Proc Natl Acad Sci U S A, 94, pp. 13293-13298
  • Fujii, N., Graybiel, A.M., Representation of action sequence boundaries by macaque prefrontal cortical neurons (2003) Science, 301, pp. 1246-1249
  • Sigman, M., Dehaene, S., Dynamics of the Central Bottleneck: Dual-Task and Task Uncertainty (2006) PLoS Biol, 4, pp. e220
  • Koechlin, E., Ody, C., Kouneiher, F., The architecture of cognitive control in the human prefrontal cortex (2003) Science, 302, pp. 1181-1185
  • Vinckier, F., Dehaene, S., Jobert, A., Dubus, J.P., Sigman, M., Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system (2007) Neuron, 55, pp. 143-156
  • Riesenhuber, M., Poggio, T., Hierarchical models of object recognition in cortex (1999) Nat Neurosci, 2, pp. 1019-1025
  • Rainer, G., Asaad, W.F., Miller, E.K., Selective representation of relevant information by neurons in the primate prefrontal cortex (1998) Nature, 393, pp. 577-579
  • Fuster, J.M., Jervey, J.P., Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli (1981) Science, 212, pp. 952-955
  • Funahashi, S., Chafee, M.V., Goldman-Rakic, P.S., Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task (1993) Nature, 365, pp. 753-756
  • Watanabe, M., Prefrontal unit activity during associative learning in the monkey (1990) Exp Brain Res, 80, pp. 296-309
  • Watanabe, M., Frontal units of the monkey coding the associative significance of visual and auditory stimuli (1992) Exp Brain Res, 89, pp. 233-247
  • Asaad, W.F., Rainer, G., Miller, E.K., Neural activity in the primate prefrontal cortex during associative learning (1998) Neuron, 21, pp. 1399-1407
  • Dehaene, S., Cohen, L., Sigman, M., Vinckier, F., The neural code for written words: A proposal (2005) Trends Cogn Sci, 9, pp. 335-341
  • Wong, K.F., Wang, X.J., A recurrent network mechanism of time integration in perceptual decisions (2006) J Neurosci, 26, pp. 1314-1328
  • Busch, N.A., Dubois, J., Vanrullen, R., The phase of ongoing EEG oscillations predicts visual perception (2009) Journal of Neuroscience, 29, p. 7869
  • Large, E.W., Jones, M.R., The Dynamics of Attending: How People Track Time-Varying Events (1999) Psychological Review, 106, pp. 119-159
  • Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., Schroeder, C.E., Entrainment of neuronal oscillations as a mechanism of attentional selection (2008) Science, 320, pp. 110-113
  • Schroeder, C.E., Lakatos, P., Low-frequency neuronal oscillations as instruments of sensory selection (2009) Trends Neurosci, 32, pp. 9-18
  • Marois, R., Ivanoff, J., Capacity limits of information processing in the brain (2005) Trends Cogn Sci, 9, pp. 296-305
  • Wong, K.F.E., The Relationship Between Attentional Blink and Psychological Refractory Period (2002) Journal of Experimental Psychology: Human Perception & Performance, 28, pp. 54-71
  • Jolicoeur, P., Concurrent Response-Selection Demands Modulate the Attentional Blink (1999) Journal of Experimental Psychology: Human Perception & Performance, 25, pp. 1097-1113
  • Jolicoeur, P., Modulation of the attentional blink by on-line response selection: Evidence from speeded and unspeeded task1 decisions (1998) Mem Cognit, 26, pp. 1014-1032
  • Zylberberg, A., Dehaene, S., Mindlin, G.B., Sigman, M., Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model (2009) Front Comput Neurosci, 3, p. 4
  • Nieuwenstein, M.R., Potter, M.C., Theeuwes, J., Unmasking the attentional blink (2009) J Exp Psychol Hum Percept Perform, 35, pp. 159-169
  • Sergent, C., Baillet, S., Dehaene, S., Timing of the brain events underlying access to consciousness during the attentional blink (2005) Nat Neurosci, 8, pp. 1391-1400
  • Graziano, M., Sigman, M., The dynamics of sensory buffers: Geometric, spatial, and experience-dependent shaping of iconic memory (2008) J Vis, 8 (9), pp. 1-13
  • Graziano, M., Sigman, M., The spatial and temporal construction of confidence in the visual scene (2009) PLoS One, 4, pp. e4909
  • Vogel, E.K., Luck, S.J., Shapiro, K.L., Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink (1998) J Exp Psychol Hum Percept Perform, 24, pp. 1656-1674
  • Sigman, M., Dehaene, S., Brain mechanisms of serial and parallel processing during dual-task performance (2008) J Neurosci, 28, pp. 7585-7598
  • Bowman, H., Wyble, B., The Simultaneous type, serial token model of temporal attention and working memory (2007) Psychological Review, 114, pp. 38-7033
  • Bowman, H., Wyble, B., Chennu, S., Craston, P., A reciprocal relationship between bottom-up trace strength and the attentional blink bottleneck: Relating the LC-NE and ST2 models (2008) Brain Research, 1202, pp. 25-42
  • Olson, I.R., Chun, M.M., Anderson, A.K., Effects of phonological length on the attentional blink for words (2001) J Exp Psychol Hum Percept Perform, 27, pp. 1116-1123
  • Lo, C.C., Wang, X.J., Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks (2006) Nat Neurosci, 9, pp. 956-963
  • Bunge, S.A., Kahn, I., Wallis, J.D., Miller, E.K., Wagner, A.D., Neural circuits subserving the retrieval and maintenance of abstract rules (2003) J Neurophysiol, 90, pp. 3419-3428
  • Miller, E.K., Cohen, J.D., An integrative theory of prefrontal cortex function (2001) Annu Rev Neurosci, 24, pp. 167-202
  • Wallis, J.D., Anderson, K.C., Miller, E.K., Single neurons in prefrontal cortex encode abstract rules (2001) Nature, 411, pp. 953-956
  • Dehaene, S., Changeux, J.P., The Wisconsin Card Sorting Test: Theoretical analysis and modeling in a neuronal network (1991) Cereb Cortex, 1, pp. 62-79
  • Baars, B.J., (1989) A Cognitive Theory of Consciousness, , Cambridge: Cambridge Univesity Press
  • Dehaene, S., Naccache, L., Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework (2001) Cognition, 79, pp. 1-37
  • Heinke, D., Humphreys, G.W., Attention, spatial representation, and visual neglect: Simulating emergent attention and spatial memory in the selective attention for identification model (SAIM) (2003) Psychol Rev, 110, pp. 29-87
  • Olshausen, B.A., Anderson, C.H., van Essen, D.C., A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information (1993) J Neurosci, 13, pp. 4700-4719
  • Pashler, H., Johnston, J.C., Ruthruff, E., Attention and Performance (2001) Ann Rev Psychol, 52, pp. 629-651
  • Arnell, K.M., Duncan, J., Separate and shared sources of dual-task cost in stimulus identification and response selection (2002) Cognit Psychol, 44, pp. 105-147
  • Arnell, K.M., Helion, A.M., Hurdelbrink, J.A., Pasieka, B., Dissociating sources of dual-task interference using human electrophysiology (2004) Psychon Bull Rev, 11, pp. 77-83
  • Brisson, B., Jolicoeur, P., Electrophysiological evidence of central interference in the control of visuospatial attention (2007) Psychon Bull Rev, 14, pp. 126-132
  • Dell'acqua, R., Jolicoeur, P., Vespignani, F., Toffanin, P., Central processing overlap modulates P3 latency (2005) Exp Brain Res, 165, pp. 54-68
  • Sessa, P., Luria, R., Verleger, R., Dell'Acqua, R., P3 latency shifts in the attentional blink: Further evidence for second target processing postponement (2007) Brain Res, 1137, pp. 131-139
  • Osman, A., Moore, C.M., The locus of dual-task interference: Psychological refractory effects on movement-related brain potentials (1993) J Exp Psychol Hum Percept Perform, 19, pp. 1292-1312
  • Luck, S.J., Sources of Dual-Task Interference: Evidence from Human Electrophysiology (1998) Psychological Science, 9, pp. 223-227
  • Menon, R.S., Luknowsky, D.C., Gati, J.S., Mental chronometry using latencyresolved functional MRI (1998) Proc Natl Acad Sci U S A, 95, pp. 10902-10907
  • Formisano, E., Goebel, R., Tracking cognitive processes with functional MRI mental chronometry (2003) Curr Opin Neurobiol, 13, pp. 174-181
  • Kim, S.G., Richter, W., Ugurbil, K., Limitations of temporal resolution in functional MRI (1997) Magn Reson Med, 37, pp. 631-636
  • Dux, P.E., Ivanoff, J., Asplund, C.L., Marois, R., Isolation of a central bottleneck of information processing with time-resolved FMRI (2006) Neuron, 52, pp. 1109-1120
  • Vogel, E.K., Luck, S.J., Shapiro, K.L., Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink ; Kranczioch, C., Debener, S., Engel, A.K., Event-related potential correlates of the attentional blink phenomenon (2003) Brain Res Cogn Brain Res, 17, pp. 177-187
  • del Cul, A., Baillet, S., Dehaene, S., Brain Dynamics Underlying the Nonlinear Threshold for Access to Consciousness (2007) PLoS Biol, 5, pp. e260
  • Kranczioch, C., Debener, S., Maye, A., Engel, A.K., Temporal dynamics of access to consciousness in the attentional blink (2007) Neuroimage, 37, pp. 947-955
  • Shapiro, K., Schmitz, F., Martens, S., Hommel, B., Schnitzler, A., Resource sharing in the attentional blink (2006) Neuroreport, 17, pp. 163-166
  • Duncan, J., Owen, A.M., Common regions of the human frontal lobe recruited by diverse cognitive demands (2000) Trends Neurosci, 23, pp. 475-483
  • Marois, R., Yi, D.J., Chun, M.M., The neural fate of consciously perceived and missed events in the attentional blink (2004) Neuron, 41, pp. 465-472
  • Jiang, Y., Resolving dual-task interference: An fMRI study (2004) Neuroimage, 22, pp. 748-754
  • Jiang, Y., Saxe, R., Kanwisher, N., Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period (2004) Psychol Sci, 15, pp. 390-396
  • Koechlin, E., Jubault, T., Broca's area and the hierarchical organization of human behavior (2006) Neuron, 50, pp. 963-974
  • Kouneiher, F., Charron, S., Koechlin, E., Motivation and cognitive control in the human prefrontal cortex (2009) Nat Neurosci, 12, pp. 939-945
  • Sigala, N., Kusunoki, M., Nimmo-Smith, I., Gaffan, D., Duncan, J., Hierarchical coding for sequential task events in the monkey prefrontal cortex (2008) Proc Natl Acad Sci U S A, 105, pp. 11969-11974
  • Jubault, T., Ody, C., Koechlin, E., Serial organization of human behavior in the inferior parietal cortex (2007) J Neurosci, 27, pp. 11028-11036
  • Tanji, J., Shima, K., Role for supplementary motor area cells in planning several movements ahead (1994) Nature, 371, pp. 413-416
  • Newell, A., (1990) Unified Theories of Cognition, , CambridgeMA: Harvard University Press
  • Treisman, A., Feature Binding, attention and object perception (1998) PhilTransRoySocLondB, 353, pp. 1295-1306
  • Treisman, A., Gelade, G., A feature integration theory of attention (1980) Cognitive Psychology, 12, pp. 97-136
  • Stroop, J.R., Studies of interference in serial verbal reactions (1935) Journal of Experimental Psychology: General, 18, pp. 643-662
  • Vanrullen, R., Koch, C., Is perception discrete or continuous? (2003) Trends Cogn Sci, 7, pp. 207-213
  • Salinas, E., Abbott, L.F., Transfer of coded information from sensory to motor networks (1995) Journal of Neuroscience, 15, pp. 6461-6474
  • Zipser, D., Andersen, R.A., A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons (1988) Nature, 331, pp. 679-684
  • Deco, G., Rolls, E.T., Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex (2005) Cerebral Cortex, 15, pp. 15-30
  • Wyble, B., Bowman, H., A neural network account of binding discrete items into working memory using a distributed pool of flexible resources (2006) Journal of Vision, 6, p. 33
  • Olshausen, B.A., Anderson, C.H., Essen, D.C., A multiscale dynamic routing circuit for forming size-and position-invariant object representations (1995) Journal of Computational Neuroscience, 2, pp. 45-62
  • Heinke, D., Mavritsaki, E., Backhaus, A., Kreyling, M., (2009) The Selective Attention for Identification Model (SAIM), pp. 80-106. , Dietmar Heinke EM, ed. Psychology Press
  • Heinke, D., Humphreys, G.W., Selective attention for identification model: Simulating visual neglect (2005) Computer Vision and Image Understanding, 100, pp. 172-197
  • Fragopanagos, N., Kockelkoren, S., Taylor, J.G., A neurodynamic model of the attentional blink (2005) Cognitive Brain Research, 24, pp. 568-586
  • Nieuwenhuis, S., Gilzenrat, M.S., Holmes, B.D., Cohen, J.D., The role of the locus coeruleus in mediating the attentional blink: A neurocomputational theory (2005) Journal of Experimental Psychology: General, 134, pp. 291-307
  • Olivers, C.N., Meeter, M., A boost and bounce theory of temporal attention (2008) Psychol Rev, 115, pp. 836-863
  • Dux, P.E., Marois, R., The Attentional Blink: A Review of Data and Theory Attention, , ((In Press)), Perception, & Psychophysics
  • Wyble, B., Bowman, H., Nieuwenstein, M., The attentional blink provides episodic distinctiveness: Sparing at a cost (2009) J Exp Psychol Hum Percept Perform, 35, pp. 787-807
  • Shih, S.I., The attention cascade model and attentional blink (2008) Cognitive Psychology, 56, pp. 210-236
  • Dell'acqua, R., Jolicoeur, P., Luria, R., Pluchino, P., Reevaluating encodingcapacity limitations as a cause of the attentional blink (2009) J Exp Psychol Hum Percept Perform, 35, pp. 338-351
  • Arnell, K.M., Jolicoeur, P., The attentional blink across stimulus modalities: Vidence for central processing limitations (1999) Journal of Experimental Sychology Uman Perception and Performance, 25, pp. 630-648
  • Visser, T.A.W., Zuvic, S.M., Bischof, W.F., di Lollo, V., The attentional blink ith targets in different spatial locations (1999) Psychonomic Bulletin and Eview, 6, pp. 32-436
  • di Lollo, V., Kawahara, J., Shahab Ghorashi, S.M., Enns, J.T., The attentional link: Resource depletion or temporary loss of control? (2005) Psychological Esearch, 9, pp. 191-200
  • Olivers, C.N., van der Stigchel, S., Hulleman, J., Spreading the sparing: Gainst a limited-capacity account of the attentional blink (2007) Psychol Res, 71, pp. 26-139
  • Nieuwenstein, M.R., Top-down controlled, delayed selection in the ttentional blink (2006) J Exp Psychol Hum Percept Perform, 32, pp. 973-985
  • Kawahara, J., Enns, J.T., di Lollo, V., The attentional blink is not a unitary henomenon (2006) Psychol Res, 70, pp. 405-413
  • Dux, P.E., Marois, R., The attentional blink: A review of data and theory (2009) Atten Percept Psychophys, 71, pp. 1683-1700
  • O'Reilly, R.C., Biologically based computational models of high-level cognition (2006) Science, 314, pp. 91-94
  • Laird, J.E., Newell, A., Rosenbloom, P.S., Soar: An architecture for general intelligence (1987) Artificial Intelligence, 33, pp. 1-64
  • Jilk, D., Lebiere, C., O'Reilly, R., Anderson, J., SAL: An explicitly pluralistic cognitive architecture (2008) Journal of Experimental & Theoretical Artificial Intelligence, 20, pp. 197-218
  • Post, E.L., Formal reductions of the general combinatorial decision problem (1943) American Journal of Mathematics, 65, pp. 197-215
  • Touretzky, D.S., Hinton, G.E., A distributed connectionist production system (1988) Cognitive Science, 12, pp. 423-466
  • Roelfsema, P.R., Cortical algorithms for perceptual grouping (2006) Annu Rev Neurosci, 29, pp. 203-227
  • Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R., Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of macaque visual cortex (1997) JNeurophysiol, 77, pp. 24-42
  • Freedman, D.J., Assad, J.A., Experience-dependent representation of visual categories in parietal cortex (2006) Nature, 443, pp. 85-88
  • Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K., Categorical representation of visual stimuli in the primate prefrontal cortex (2001) Science, 291, pp. 312-316
  • Oristaglio, J., Schneider, D.M., Balan, P.F., Gottlieb, J., Integration of visuospatial and effector information during symbolically cued limb movements in monkey lateral intraparietal area (2006) J Neurosci, 26, pp. 8310-8319
  • Schall, J.D., Thompson, K.G., Neural selection and control of visually guided eye movements (1999) Annu Rev Neurosci, 22, pp. 241-259
  • Gold, J.I., Shadlen, M.N., The neural basis of decision making (2007) Annu Rev Neurosci, 30, pp. 535-574
  • Roitman, J.D., Shadlen, M.N., Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task (2002) J Neurosci, 22, pp. 9475-9489
  • Bruce, C.J., Goldberg, M.E., Primate frontal eye fields. I. Single neurons discharging before saccades (1985) J Neurophysiol, 53, pp. 603-635
  • Wise, S.P., The primate premotor cortex: Past, present, and preparatory (1985) Annu Rev Neurosci, 8, pp. 1-19
  • Alexander, G.E., Crutcher, M.D., Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey (1990) J Neurophysiol, 64, pp. 164-178
  • Roelfsema, P.R., Lamme, V.A.F., Spekreijse, H., Object-based attention in the primary visual cortex of the macaque monkey (1998) Nature, 395, pp. 376-381
  • Lamme, V.A., Roelfsema, P.R., The distinct modes of vision offered by feedforward and recurrent processing (2000) Trends Neurosci, 23, pp. 571-579
  • Li, W., Piech, V., Gilbert, C.D., Contour saliency in primary visual cortex (2006) Neuron, 50, pp. 951-962
  • Hillyard, S.A., Anllo-Vento, L., Event-related brain potentials in the study of visual selective attention (1998) Proc Natl Acad Sci U S A, 95, pp. 781-787
  • Shadlen, M.N., Newsome, W.T., Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey (2001) J Neurophysiol, 86, pp. 1916-1936
  • Hupe, J.M., James, A.C., Girard, P., Lomber, S.G., Payne, B.R., Feedback connections act on the early part of the responses in monkey visual cortex (2001) J Neurophysiol, 85, pp. 134-145
  • Bullier, J., Integrated model of visual processing (2001) Brain Research Reviews, 36, pp. 96-107
  • Roelfsema, P.R., Khayat, P.S., Spekreijse, H., Subtask sequencing in the primary visual cortex (2003) Proc Natl Acad Sci U S A, 100, pp. 5467-5472
  • Bollimunta, A., Chen, Y., Schroeder, C.E., Ding, M., Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques (2008) J Neurosci, 28, pp. 9976-9988
  • Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., Neurophysiological investigation of the basis of the fMRI signal (2001) Nature, 412, pp. 150-157
  • Whittingstall, K., Logothetis, N.K., Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex (2009) Neuron, 64, pp. 281-289
  • Lakatos, P., Chen, C.M., O'Connell, M.N., Mills, A., Schroeder, C.E., Neuronal oscillations and multisensory interaction in primary auditory cortex (2007) Neuron, 53, pp. 279-292
  • Schroeder, C.E., Foxe, J., Multisensory contributions to low-level, 'unisensory' processing (2005) Curr Opin Neurobiol, 15, pp. 454-458
  • Jahr, C.E., Stevens, C.F., Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics (1990) J Neurosci, 10, pp. 3178-3182
  • Rolls, E.T., Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition (2000) Neuron, 27, pp. 205-218
  • Amit, D.J., Brunel, N., Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex (1997) Cerebral Cortex, 7, pp. 237-252
  • Deco, G., Rolls, E.T., A neurodynamical cortical model of visual attention and invariant object recognition (2004) Vision Res, 44, pp. 621-642

Citas:

---------- APA ----------
Zylberberg, A., Slezak, D.F., Roelfsema, P.R., Dehaene, S. & Sigman, M. (2010) . The brain's router: A cortical network model of serial processing in the primate brain. PLoS Computational Biology, 6(4).
http://dx.doi.org/10.1371/journal.pcbi.1000765
---------- CHICAGO ----------
Zylberberg, A., Slezak, D.F., Roelfsema, P.R., Dehaene, S., Sigman, M. "The brain's router: A cortical network model of serial processing in the primate brain" . PLoS Computational Biology 6, no. 4 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000765
---------- MLA ----------
Zylberberg, A., Slezak, D.F., Roelfsema, P.R., Dehaene, S., Sigman, M. "The brain's router: A cortical network model of serial processing in the primate brain" . PLoS Computational Biology, vol. 6, no. 4, 2010.
http://dx.doi.org/10.1371/journal.pcbi.1000765
---------- VANCOUVER ----------
Zylberberg, A., Slezak, D.F., Roelfsema, P.R., Dehaene, S., Sigman, M. The brain's router: A cortical network model of serial processing in the primate brain. PLoS Comput. Biol. 2010;6(4).
http://dx.doi.org/10.1371/journal.pcbi.1000765