Artículo

Chan, H.K.; Hersperger, F.; Marachlian, E.; Smith, B.H.; Locatelli, F.; Szyszka, P.; Nowotny, T. "Odorant mixtures elicit less variable and faster responses than pure odorants" (2018) PLoS Computational Biology. 14(12)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In natural environments, odors are typically mixtures of several different chemical compounds. However, the implications of mixtures for odor processing have not been fully investigated. We have extended a standard olfactory receptor model to mixtures and found through its mathematical analysis that odorant-evoked activity patterns are more stable across concentrations and first-spike latencies of receptor neurons are shorter for mixtures than for pure odorants. Shorter first-spike latencies arise from the nonlinear dependence of binding rate on odorant concentration, commonly described by the Hill coefficient, while the more stable activity patterns result from the competition between different ligands for receptor sites. These results are consistent with observations from numerical simulations and physiological recordings in the olfactory system of insects. Our results suggest that mixtures allow faster and more reliable olfactory coding, which could be one of the reasons why animals often use mixtures in chemical signaling. © 2018 Chan et al. http://creativecommons.org/licenses/by/4.0/.

Registro:

Documento: Artículo
Título:Odorant mixtures elicit less variable and faster responses than pure odorants
Autor:Chan, H.K.; Hersperger, F.; Marachlian, E.; Smith, B.H.; Locatelli, F.; Szyszka, P.; Nowotny, T.
Filiación:Sussex Neuroscience, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, United Kingdom
Department of Neuroscience, University of Konstanz, Konstanz, Germany
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
School of Life Sciences, Arizona State University, Tempe, AZ, United States
Palabras clave:2 butanone; 2 hexenyl acetic acid; acetic acid ethyl ester; chemical compound; ethyl 2 methylbutanoic acid; methylbutyric acid; unclassified drug; fragrance; Apis mellifera; Article; concentration (parameter); controlled study; Drosophila melanogaster; honeybee; mathematical analysis; mathematical model; nonhuman; odor; olfactory receptor; olfactory system; signal transduction; analysis; animal; bee; chemistry; drug mixture; insect; odor; olfactory bulb; olfactory receptor neuron; physiology; theoretical model; Animals; Bees; Complex Mixtures; Insecta; Models, Theoretical; Odorants; Olfactory Bulb; Olfactory Receptor Neurons; Receptors, Odorant; Smell
Año:2018
Volumen:14
Número:12
DOI: http://dx.doi.org/10.1371/journal.pcbi.1006536
Título revista:PLoS Computational Biology
Título revista abreviado:PLoS Comput. Biol.
ISSN:1553734X
CAS:2 butanone, 78-93-3; acetic acid ethyl ester, 141-78-6; Complex Mixtures; Receptors, Odorant
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1553734X_v14_n12_p_Chan

Referencias:

  • Galizia, C.G., Sachse, S., Rappert, A., Menzel, R., The glomerular code for odor representation is species specific in the honeybee Apis mellifera (1999) Nat Neurosci, 2, pp. 473-478. , pmid:10321253
  • Sachse, S., Galizia, C.G., The coding of odour-intensity in the honeybee antennal lobe: Local computation optimizes odour representation (2003) Eur J Neurosci, 18, pp. 2119-2132. , pmid:14622173
  • Stopfer, M., Jayaraman, V., Laurent, G., Intensity versus identity coding in an olfactory system (2003) Neuron, 39, pp. 991-1004. , pmid:12971898
  • Bhandawat, V., Olsen, S.R., Gouwens, N.W., Schlief, M.L., Wilson, R.I., Sensory Processing in the Drosophila Antennal Lobe Increases the Reliability and Separability of Ensemble Odor Representations (2007) Nat Neurosci, 10, pp. 1474-1482. , pmid:17922008
  • Carcaud, J., Hill, T., Giurfa, M., Sandoz, J.-C., Differential coding by two olfactory subsystems in the honeybee brain (2012) J Neurophysiol, 108, pp. 1106-1121. , pmid:22572948
  • de Bruyne, M., Clyne, P.J., Carlson, J.R., Odor Coding in a Model Olfactory Organ: The Drosophila Maxillary Palp (1999) J Neurosci, 19, pp. 4520-4532. , pmid:10341252
  • Rospars, J.-P., Lansky, P., Chaput, M., Duchamp-Viret, P., Competitive and Noncompetitive Odorant Interactions in the Early Neural Coding of Odorant Mixtures (2008) J Neurosci, 28, pp. 2659-2666. , pmid:18322109
  • Deisig, N., Giurfa, M., Sandoz, J.C., Antennal lobe processing increases separability of odor mixture representations in the honeybee (2010) J Neurophysiol, 103, pp. 2185-2194. , pmid:20181736
  • Cruz, G., Lowe, G., Neural coding of binary mixtures in a structurally related odorant pair (2013) Sci Rep, 3, p. 1220. , pmid:23386975
  • Meyer, A., Galizia, C.G., Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera) (2012) J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol, 198, pp. 159-171. , pmid:22083110
  • Krofczik, S., Menzel, R., Martin, P., Rapid odor processing in the honeybee antennal lobe network (2009) Front Comput Neurosci, 2, pp. 1-13. , pmid:19221584
  • Fernandez, P.C., Locatelli, F.F., Person-Rennell, N., Deleo, G., Smith, B.H., Associative Conditioning Tunes Transient Dynamics of Early Olfactory Processing (2009) J Neurosci, 29, pp. 10191-10202. , pmid:19692594
  • Locatelli, F.F., Fernandez, P.C., Smith, B.H., Learning about natural variation of odor mixtures enhances categorization in early olfactory processing (2016) J Exp Biol, 219, pp. 2752-2762. , pmid:27412003
  • Knudsen, J.T., Floral scent differentiation among coflowering, sympatric species of Geonoma (Arecaceae) (1999) Plant Species Biol, 14, pp. 137-142
  • El-Sayed, A.M., Byers, J.A., Manning, L.M., Jürgens, A., Mitchell, V.J., Suckling, D.M., Floral scent of Canada thistle and its potential as a generic insect attractant (2008) J Econ Entomol, 101, pp. 720-727. , pmid:18613571
  • Hetherington-Rauth, M.C., Ramírez, S.R., Evolution and diversity of floral scent chemistry in the euglossine bee-pollinated orchid genus Gongora (2016) Ann Bot, 118, pp. 135-148. , pmid:27240855
  • Bortolotti, L., Costa, C., Mucignat-Caretta, C., (2014) Neurobiology of Chemical Communication, , https://www.ncbi.nlm.nih.gov/books/NBK200983/, CRC Press/Taylor & Francis In
  • Blum, M.S., Graham, J.M., (1992) The hive and the honey bee, pp. 374-400. , Hamilton, Illinois Dadant & Sons In pp
  • Reisert, J., Matthews, H.R., Response properties of isolated mouse olfactory receptor cells (2001) J Physiol, 530, pp. 113-122. , pmid:11136863
  • Malnic, B., Hirono, J., Sato, T., Buck, L.B., Combinatorial receptor codes for odors (1999) Cell, 96, pp. 713-723. , pmid:10089886
  • Hallem, E.A., Carlson, J.R., Coding of Odors by a Receptor Repertoire (2006) Cell, 125, pp. 143-160. , pmid:16615896
  • Koulakov, A., Gelperin, A., Rinberg, D., Olfactory Coding With All-or-Nothing Glomeruli (2007) J Neurophysiol, 98, pp. 3134-3142. , pmid:17855585
  • Yamagata, N., Schmuker, M., Szyszka, P., Mizunami, M., Menzel, R., Differential odor processing in two olfactory pathways in the honeybee (2009) Front Syst Neurosci, 3, pp. 1-13
  • del Castillo, J., Katz, B., Interaction at end-plate receptors between different choline derivatives (1957) Proc R Soc Lond B, 146, pp. 369-381. , pmid:13431862
  • Marasco, A., De Paris, A., Migliore, M., Predicting the response of olfactory sensory neurons to odor mixtures from single odor response (2016) Sci Rep. Nature Publishing Group, 6, pp. 1-12. , pmid:27053070
  • Nowotny, T., Stierle, J.S., Galizia, C.G., Szyszka, P., Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation (2013) Brain Res. Elsevier, 1536, pp. 119-134. , pmid:23743263
  • Ditzen, M., (2005) Odor concentration and identity coding in the antennal lobe of the honeybee Apis mellifera, , Freie Universität Berlin Berlin [Internet]
  • Grémiaux, A., Nowotny, T., Martinez, D., Lucas, P., Rospars, J.-P., Modelling the signal delivered by a population of first-order neurons in a moth olfactory system (2012) Brain Res. Elsevier B.V., 1434, pp. 123-135. , pmid:22030408
  • Szyszka, P., Gerkin, R.C., Galizia, C.G., Smith, B.H., High-speed odor transduction and pulse tracking by insect olfactory receptor neurons (2014) Proc Natl Acad Sci U S A, 111, pp. 16925-16930. , pmid:25385618
  • Leff, P., The two-state model of receptor activation (1995) Trends Pharmalogical Sci, 16, pp. 89-97
  • Duchamp-Viret, P., Duchamp, A., Chaput, M.A., Single olfactory sensory neurons simultaneously integrate the components of an odour mixture (2003) Eur J Neurosci, 18, pp. 2690-2696. , pmid:14656317
  • Flanagan, D., Mercer, A.R., An atlas and 3-D reconstruction of the antennal lobes in the worker honey bee, Apis mellifera L. (Hymenoptera: Apidae) (1989) Int J Insect Morphol Embryol, 18, pp. 145-159
  • Galizia, C.G., McIlwrath, S.L., Menzel, R., A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy (1999) Cell Tissue Res, 295, pp. 383-394. , pmid:10022959
  • Chan, H.K., Yang, D.-P., Zhou, C., Nowotny, T., Burst Firing Enhances Neural Output Correlation (2016) Front Comput Neurosci, 10, pp. 1-12
  • Reddy, G., Zak, J., Vergassola, M., Murthy, V.N., Antagonism in olfactory receptor neurons and its implications for the perception of odor mixtures (2018) Elife, 7, p. e34958. , pmid:29687778
  • Egea-Weiss, A., Alpha, R., Kleineidam, C.J., Szyszka, P., High precision of spike timing across olfactory receptor neurons allows rapid odor coding in Drosophila (2018) ISCIENCE. Elsevier Inc., , pmid:30240755
  • Andersson, M.N., Larsson, M.C., Blazenec, M., Jakus, R., Zhang, Q.-H., Schlyter, F., Peripheral modulation of pheromone response by inhibitory host compound in a beetle (2010) J Exp Biol, 213, pp. 3332-3339. , pmid:20833926
  • Hillier, N.K., Vickers, N.J., Mixture interactions in moth olfactory physiology: Examining the effects of odorant mixture, concentration, distal stimulation, and antennal nerve transection on sensillar responses (2011) Chem Senses, 36, pp. 93-108. , pmid:20937614
  • Münch, D., Schmeichel, B., Silbering, A.F., Galizia, C.G., Weaker ligands can dominate an odor blend due to syntopic interactions (2013) Chem Senses, 38, pp. 293-304. , pmid:23315042
  • O’Connell, R., Beauchamp, J.T., Grant, A.J., Insect olfactory receptor responses to components of pheromone blends (1986) J Chem Ecol, 12, pp. 451-467. , pmid:24306790
  • De Jong, R., Visser, J.H., Specificity-related suppression of responses to binary mixtures in olfactory receptors of the Colorado potato beetle (1988) Brain Res, 447, pp. 18-24. , pmid:3382950
  • Smart, R., Kiely, A., Maa, B., Vargas, E., Carraher, C., Kralicek, A.V., Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins (2008) Insect Biochem Mol Biol, 38, pp. 770-780. , pmid:18625400
  • Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L.B., Touhara, K., Insect olfactory receptors are heteromeric ligand-gated ion channels (2008) Nature, 452, pp. 1002-1006. , pmid:18408712
  • Wicher, D., Schafer, R., Bauernfeind, R., Stensmyr, M.C., Heller, R., Heinemann, S.H., Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels (2008) Nature, 452, pp. 1007-1011. , pmid:18408711
  • Galizia, C.G., Franke, T., Menzel, R., Sandoz, J.C., Optical imaging of concealed brain activity using a gold mirror in honeybees (2012) J Insect Physiol. Elsevier Ltd, 58, pp. 743-749. , pmid:22414536
  • Getz, W.M., Akers, R.P., Partitioning non-linearities in the response of honey bee olfactory receptor neurons to binary odors (1995) Biosystems, 34, pp. 27-40. , pmid:7727704
  • Su, C., Menuz, K., Reisert, J., Carlson, J.R., Non-synaptic inhibition between grouped neurons in an olfactory circuit (2012) Nature. Nature Publishing Group, pp. 1-7. , pmid:23172146
  • Van der Goes van Naters, W., Inhibition among olfactory receptor neurons (2013) Front Hum Neurosci, 7, pp. 1-5
  • Bhandawat, V., Maimon, G., Dickinson, M.H., Wilson, R.I., Olfactory modulation of flight in Drosophila is sensitive, selective and rapid (2010) J Exp Biol, 213, p. 4313
  • Resulaj, A., Rinberg, D., Novel Behavioral Paradigm Reveals Lower Temporal Limits on Mouse Olfactory Decisions (2015) J Neurosci, 35, pp. 11667-11673. , pmid:26290243
  • Junek, S., Kludt, E., Wolf, F., Schild, D., Olfactory Coding with Patterns of Response Latencies (2010) Neuron. Elsevier Inc., 67, pp. 872-884. , pmid:20826317
  • Sanders, H., Kolterman, B., Rinberg, D., Koulakov, A., (2014) Odors in Olfactory Bulb are Defined by a Short Discrete Temporal Sequence: Recognition by Brute-Force Conversion to a Spatial Pattern (Chunking), pp. 1-17. , http://arxiv.org/abs/1405.5617, a, Lisman, [q-bioNC]
  • Wilson, C.D., Serrano, G.O., Koulakov, A.A., Rinberg, D., A primacy code for odor identity (2017) Nat Commun. Springer US, 8, p. 1477. , pmid:29133907
  • Kepple, D., Giaffar, H., Rinberg, D., (2016) Deconstructing Odorant Identity via Primacy in Dual Networks, pp. 1-10. , [q-bioNC]
  • Murlis, J., Elkinton, J.S., Cardé, R.T., Odour plumes and how insects use them (1992) Annu Rev Entamology, 37, pp. 505-532. , http://doi.org/10.1146/annurev.en.37.010192.002445
  • Celani, A., Villermaux, E., Vergassola, M., Odor landscapes in turbulent environments (2014) Phys Rev X, 4, pp. 1-17
  • Strauch, M., Ditzen, M., Galizia, C.G., Keeping their distance? Odor response patterns along the concentration range (2012) Front Syst Neurosci, 6, p. 71. , pmid:23087621
  • Nehrkorn, J., Tanimoto, H., Herz, A.V.M., Yarali, A., A model for non-monotonic intensity coding (2015) R Soc Open Sci, 2, p. 150120. , pmid:26064666
  • Hopfield, J.J., Pattern recognition computation using action potential timing for stimulus representation (1995) Nature, 376, pp. 33-36. , pmid:7596429
  • Brill, M.F., Meyer, A., Rössler, W., It takes two-coincidence coding within the dual olfactory pathway of the honeybee (2015) Front Physiol, 6, pp. 1-14
  • Arnson, H.A., Holy, T.E., Robust Encoding of Stimulus Identity and Concentration in the Accessory Olfactory System (2013) J Neurosci, 33, pp. 13388-13397. , pmid:23946396
  • Haenicke, J., (2015) Modeling Insect Inspired Mechanisms of Neural and Behavioral Plasticity [Internet], , http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000100699, Freie Universität Berlin, Berlin
  • Linster, C., Sachse, S., Galizia, C.G., Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli (2005) J Neurophysiol, 93, pp. 3410-3417. , pmid:15673548
  • Richardson, M.J.E., Gerstner, W., Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance (2005) Neural Comput, 17, pp. 923-947. , pmid:15829095
  • Kuhn, A., Aertsen, A., Rotter, S., Neuronal Integration of Synaptic Input in the Fluctuation-Driven Regime (2004) J Neurosci, 24, pp. 2345-2356. , pmid:15014109
  • Münch, D., Galizia, C.G., DoOR 2.0—Comprehensive Mapping of Drosophila melanogaster Odorant Responses (2016) Sci Rep, 6, p. 21841. , pmid:26912260
  • Raiser, G., Galizia, C.G., Szyszka, P., A High-Bandwidth Dual-Channel Olfactory Stimulator for Studying Temporal Sensitivity of Olfactory Processing (2016) Chem Senses, 42, p. bjw114. , pmid:27988494
  • Kirschner, S., Kleineidam, C.J., Rybak, J., Grünewald, B., Rössler, W., Dual Olfactory Pathway in the Honeybee, Apis mellifera (2006) J Comp Neurol, 499, pp. 933-952. , pmid:17072827
  • Chen, J.-Y., Marachlian, E., Assisi, C., Huerta, R., Smith, B.H., Locatelli, F., Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components (2015) J Neurosci, 35, pp. 179-197. , pmid:25568113

Citas:

---------- APA ----------
Chan, H.K., Hersperger, F., Marachlian, E., Smith, B.H., Locatelli, F., Szyszka, P. & Nowotny, T. (2018) . Odorant mixtures elicit less variable and faster responses than pure odorants. PLoS Computational Biology, 14(12).
http://dx.doi.org/10.1371/journal.pcbi.1006536
---------- CHICAGO ----------
Chan, H.K., Hersperger, F., Marachlian, E., Smith, B.H., Locatelli, F., Szyszka, P., et al. "Odorant mixtures elicit less variable and faster responses than pure odorants" . PLoS Computational Biology 14, no. 12 (2018).
http://dx.doi.org/10.1371/journal.pcbi.1006536
---------- MLA ----------
Chan, H.K., Hersperger, F., Marachlian, E., Smith, B.H., Locatelli, F., Szyszka, P., et al. "Odorant mixtures elicit less variable and faster responses than pure odorants" . PLoS Computational Biology, vol. 14, no. 12, 2018.
http://dx.doi.org/10.1371/journal.pcbi.1006536
---------- VANCOUVER ----------
Chan, H.K., Hersperger, F., Marachlian, E., Smith, B.H., Locatelli, F., Szyszka, P., et al. Odorant mixtures elicit less variable and faster responses than pure odorants. PLoS Comput. Biol. 2018;14(12).
http://dx.doi.org/10.1371/journal.pcbi.1006536