Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cellular functions emerge from the collective action of a large number of different proteins. Understanding how these protein networks operate requires monitoring their components in intact cells. Due to intercellular and intracellular molecular variability, it is important to monitor simultaneously multiple components at high spatiotemporal resolution. However, inherent trade-offs narrow the boundaries of achievable multiplexed imaging. Pushing these boundaries is essential for a better understanding of cellular processes. Here the motivations, challenges and approaches for multiplexed imaging of intracellular protein networks are discussed. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry

Registro:

Documento: Artículo
Título:Multiplexed imaging of intracellular protein networks
Autor:Grecco, H.E.; Imtiaz, S.; Zamir, E.
Filiación:Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
Palabras clave:cell-to-cell variability; cyclic immunofluorescence; fluorescent proteins; high-throughput microscopy; immunofluorescence; live cell imaging; multicolor imaging; multispectral imaging; spatial organization; spectral unmixing; green fluorescent protein; chemistry; cytoplasm; fluorescence microscopy; genetics; molecular imaging; procedures; protein protein interaction; Cytoplasm; Green Fluorescent Proteins; Microscopy, Fluorescence; Molecular Imaging; Protein Interaction Maps
Año:2016
Volumen:89
Número:8
Página de inicio:761
Página de fin:775
DOI: http://dx.doi.org/10.1002/cyto.a.22876
Título revista:Cytometry Part A
Título revista abreviado:Cytometry Part A
ISSN:15524922
CODEN:CPAYA
CAS:Green Fluorescent Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15524922_v89_n8_p761_Grecco

Referencias:

  • Zamir, E., Bastiaens, P.I., Reverse engineering intracellular biochemical networks (2008) Nat Chem Biol, 4, pp. 643-647
  • Kholodenko, B.N., Kiyatkin, A., Bruggeman, F.J., Sontag, E., Westerhoff, H.V., Hoek, J.B., Untangling the wires: A strategy to trace functional interactions in signaling and gene networks (2002) Proc Natl Acad Sci U S A, 99, pp. 12841-12846
  • Gangaraju, V.K., Lin, H., MicroRNAs: Key regulators of stem cells (2009) Nat Rev Mol Cell Biol, 10, pp. 116-125
  • Rottiers, V., Naar, A.M., MicroRNAs in metabolism and metabolic disorders (2012) Nat Rev Mol Cell Biol, 13, pp. 239-250
  • Ambros, V., microRNAs: Tiny regulators with great potential (2001) Cell, 107, pp. 823-826
  • Nishida, M., Maruyama, Y., Tanaka, R., Kontani, K., Nagao, T., Kurose, H., G alpha(i) and G alpha(o) are target proteins of reactive oxygen species (2000) Nature, 408, pp. 492-495
  • Berridge, M.J., Bootman, M.D., Roderick, H.L., Calcium signalling: Dynamics, homeostasis and remodelling (2003) Nat Rev Mol Cell Biol, 4, pp. 517-529
  • Saltel, F., Mortier, E., Hytonen, V.P., Jacquier, M.C., Zimmermann, P., Vogel, V., Liu, W., Wehrle-Haller, B., New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering (2009) J Cell Biol, 187, pp. 715-731
  • Jagannathan-Bogdan, M., Zon, L.I., Hematopoiesis (2013) Development, 140, pp. 2463-2467
  • Trapnell, C., Defining cell types and states with single-cell genomics (2015) Genome Res, 25, pp. 1491-1498
  • Rothenberg, E.V., Stepwise specification of lymphocyte developmental lineages (2000) Curr Opin Genet Dev, 10, pp. 370-379
  • Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S., Stochastic gene expression in a single cell (2002) Science, 297, pp. 1183-1186
  • Ohnishi, Y., Huber, W., Tsumura, A., Kang, M., Xenopoulos, P., Kurimoto, K., Oles, A.K., Hadjantonakis, A.K., Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages (2014) Nat Cell Biol, 16, pp. 27-37
  • Flusberg, D.A., Sorger, P.K., Surviving apoptosis: Life-death signaling in single cells (2015) Trends Cell Biol, 25, pp. 446-458
  • Wieczorek, J., Malik-Sheriff, R.S., Fermin, Y., Grecco, H.E., Zamir, E., Ickstadt, K., Uncovering distinct protein-network topologies in heterogeneous cell populations (2015) BMC Syst Biol, 9, p. 24
  • Spencer, S.L., Gaudet, S., Albeck, J.G., Burke, J.M., Sorger, P.K., Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis (2009) Nature, 459, pp. 428-432
  • Paek, A.L., Liu, J.C., Loewer, A., Forrester, W.C., Lahav, G., Cell-to-cell variation in p53 dynamics leads to fractional killing (2016) Cell, 165, pp. 631-642
  • Gaudet, S., Miller-Jensen, K., Redefining Signaling Pathways with an Expanding Single-Cell Toolbox (2016) Trends Biotechnol, , in press. [PMID 26968612.]
  • Shalek, A.K., Satija, R., Adiconis, X., Gertner, R.S., Gaublomme, J.T., Raychowdhury, R., Schwartz, S., Lu, D., Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells (2013) Nature, 498, pp. 236-240
  • Khoo, B.L., Chaudhuri, P.K., Ramalingam, N., Tan, D.S., Lim, C.T., Warkiani, M.E., Single-cell profiling approaches to probing tumor heterogeneity (2016) Int J Cancer, , in press. [PMID 26789729]
  • Spiller, D.G., Wood, C.D., Rand, D.A., White, M.R., Measurement of single-cell dynamics (2010) Nature, 465, pp. 736-745
  • Bendall, S.C., Nolan, G.P., From single cells to deep phenotypes in cancer (2012) Nat Biotechnol, 30, pp. 639-647
  • Edwards, B.S., Oprea, T., Prossnitz, E.R., Sklar, L.A., Flow cytometry for high-throughput, high-content screening (2004) Curr Opin Chem Biol, 8, pp. 392-398
  • Brown, M., Wittwer, C., Flow cytometry: Principles and clinical applications in hematology (2000) Clin Chem, 46, pp. 1221-1229
  • Zamir, E., Geiger, B., Cohen, N., Kam, Z., Katz, B.Z., Resolving and classifying haematopoietic bone-marrow cell populations by multi-dimensional analysis of flow-cytometry data (2005) Br J Haematol, 129, pp. 420-431
  • Hale, M.B., Nolan, G.P., Phospho-specific flow cytometry: Intersection of immunology and biochemistry at the single-cell level (2006) Curr Opin Mol Ther, 8, pp. 215-224
  • Krutzik, P.O., Crane, J.M., Clutter, M.R., Nolan, G.P., High-content single-cell drug screening with phosphospecific flow cytometry (2008) Nat Chem Biol, 4, pp. 132-142
  • Irish, J.M., Hovland, R., Krutzik, P.O., Perez, O.D., Bruserud, O., Gjertsen, B.T., Nolan, G.P., Single cell profiling of potentiated phospho-protein networks in cancer cells (2004) Cell, 118, pp. 217-228
  • Irish, J.M., Kotecha, N., Nolan, G.P., Mapping normal and cancer cell signalling networks: Towards single-cell proteomics (2006) Nat Rev Cancer, 6, pp. 146-155
  • Krutzik, P.O., Irish, J.M., Nolan, G.P., Perez, O.D., Analysis of protein phosphorylation and cellular signaling events by flow cytometry: Techniques and clinical applications (2004) Clin Immunol, 110, pp. 206-221
  • Forman, M.A., Gupta, R.K., Tandem dyes for flow cytometry: Can we overcome quality concerns? (2007) MLO Med Lab Obs, 39, p. 24
  • Hulspas, R., Dombkowski, D., Preffer, F., Douglas, D., Kildew-Shah, B., Gilbert, J., Flow cytometry and the stability of phycoerythrin-tandem dye conjugates (2009) Cytometry A, 75A, pp. 966-972
  • Johansson, U., Macey, M., Tandem dyes: Stability in cocktails and compensation considerations (2014) Cytometry B Clin Cytom, 86B, pp. 164-174
  • Le Roy, C., Varin-Blank, N., Ajchenbaum-Cymbalista, F., Letestu, R., Flow cytometry APC-tandem dyes are degraded through a cell-dependent mechanism (2009) Cytometry A, 75A, pp. 882-890
  • Batard, P., Szollosi, J., Luescher, I., Cerottini, J.C., MacDonald, R., Romero, P., Use of phycoerythrin and allophycocyanin for fluorescence resonance energy transfer analyzed by flow cytometry: Advantages and limitations (2002) Cytometry, 48, pp. 97-105
  • O'Donnell, E.A., Ernst, D.N., Hingorani, R., Multiparameter flow cytometry: Advances in high resolution analysis (2013) Immune Netw, 13, pp. 43-54
  • Nolan, G.P., Flow cytometry in the post fluorescence era (2011) Best Pract Res Clin Haematol, 24, pp. 505-508
  • Bendall, S.C., Nolan, G.P., Roederer, M., Chattopadhyay, P.K., A deep profiler's guide to cytometry (2012) Trends Immunol, 33, pp. 323-332
  • Finck, R., Simonds, E.F., Jager, A., Krishnaswamy, S., Sachs, K., Fantl, W., Pe'er, D., Bendall, S.C., Normalization of mass cytometry data with bead standards (2013) Cytometry A, 83A, pp. 483-494
  • Fienberg, H.G., Nolan, G.P., Mass cytometry to decipher the mechanism of nongenetic drug resistance in cancer (2014) Curr Top Microbiol Immunol, 377, pp. 85-94
  • Zivanovic, N., Jacobs, A., Bodenmiller, B., A practical guide to multiplexed mass cytometry (2014) Curr Top Microbiol Immunol, 377, pp. 95-109
  • Nassar, A.F., Wisnewski, A.V., Raddassi, K., Mass cytometry moving forward in support of clinical research: Advantages and considerations (2016) Bioanalysis, 8, pp. 255-257
  • Lai, L., Ong, R., Li, J., Albani, S., A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF) (2015) Cytometry A, 87A, pp. 369-374
  • Atkuri, K.R., Stevens, J.C., Neubert, H., Mass cytometry: A highly multiplexed single-cell technology for advancing drug development (2015) Drug Metab Dispos, 43, pp. 227-233
  • Tanner, S.D., Baranov, V.I., Ornatsky, O.I., Bandura, D.R., George, T.C., An introduction to mass cytometry: Fundamentals and applications (2013) Cancer Immunol Immunother, 62, pp. 955-965
  • Bendall, S.C., Simonds, E.F., Qiu, P., Amir el, A.D., Krutzik, P.O., Finck, R., Bruggner, R.V., Ornatsky, O.I., Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum (2011) Science, 332, pp. 687-696. , and others
  • Ornatsky, O., Bandura, D., Baranov, V., Nitz, M., Winnik, M.A., Tanner, S., Highly multiparametric analysis by mass cytometry (2010) J Immunol Methods, 361, pp. 1-20
  • Doan, H.Q., Chinn, G.M., Jahan-Tigh, R.R., Flow cytometry ii: Mass and imaging cytometry (2015) J Invest Dermatol, 135
  • Kinkhabwala, A., Bastiaens, P.I., Spatial aspects of intracellular information processing (2010) Curr Opin Genet Dev, 20, pp. 31-40
  • Fuller, B.G., Lampson, M.A., Foley, E.A., Rosasco-Nitcher, S., Le, K.V., Tobelmann, P., Brautigan, D.L., Kapoor, T.M., Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient (2008) Nature, 453, pp. 1132-1136
  • Kam, Z., Zamir, E., Geiger, B., Probing molecular processes in live cells by quantitative multidimensional microscopy (2001) Trends Cell Biol, 11, pp. 329-334
  • Zamir, E., Geiger, B., Molecular complexity and dynamics of cell-matrix adhesions (2001) J Cell Sci, 114, pp. 3583-3590
  • Zamir, E., Geiger, B., Kam, Z., Quantitative multicolor compositional imaging resolves molecular domains in cell-matrix adhesions (2008) PLoS One, 3
  • Zamir, E., Katz, B.Z., Aota, S., Yamada, K.M., Geiger, B., Kam, Z., Molecular diversity of cell-matrix adhesions (1999) J Cell Sci, 112, pp. 1655-1669
  • Zamir, E., Katz, M., Posen, Y., Erez, N., Yamada, K.M., Katz, B.Z., Lin, S., Kam, Z., Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts (2000) Nat Cell Biol, 2, pp. 191-196
  • Zamir, E., Vartak, N., Bastiaens, P.I.H., Oncogenic signaling from the plasma membrane (2013) Vesicle Trafficking in Cancer, pp. 57-74. , In, Yarden Y, Tarcic G, editors., New York, Springer
  • Kholodenko, B.N., Hancock, J.F., Kolch, W., Signalling ballet in space and time (2010) Nat Rev Mol Cell Biol, 11, pp. 414-426
  • Rompp, A., Spengler, B., Mass spectrometry imaging with high resolution in mass and space (2013) Histochem Cell Biol, 139, pp. 759-783
  • Schober, Y., Guenther, S., Spengler, B., Rompp, A., High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue (2012) Rapid Commun Mass Spectrom, 26, pp. 1141-1146
  • Aichler, M., Walch, A., MALDI Imaging mass spectrometry: Current frontiers and perspectives in pathology research and practice (2015) Lab Invest, 95, pp. 422-431
  • Schwamborn, K., Caprioli, R.M., Molecular imaging by mass spectrometry–looking beyond classical histology (2010) Nat Rev Cancer, 10, pp. 639-646
  • Cornett, D.S., Reyzer, M.L., Chaurand, P., Caprioli, R.M., MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems (2007) Nat Methods, 4, pp. 828-833
  • Giesen, C., Wang, H.A., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., Schuffler, P.J., Brandt, S., Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry (2014) Nat Methods, 11, pp. 417-422
  • Robertson, J., Jacquemet, G., Byron, A., Jones, M.C., Warwood, S., Selley, J.N., Knight, D., Humphries, M.J., Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling (2015) Nat Commun, 6, p. 6265
  • Geiger, T., Zaidel-Bar, R., Opening the floodgates: Proteomics and the integrin adhesome (2012) Curr Opin Cell Biol, 24, pp. 562-568
  • Bray, J., (1995) The Communications Miracle: The Telecommunication Pioneers From MORSE to the Information Superhighway, p. 379. , New York, London, Plenum, xix
  • Neher, R., Neher, E., Optimizing imaging parameters for the separation of multiple labels in a fluorescence image (2004) J Microsc, 213, pp. 46-62
  • Lim, S.J., Zahid, M.U., Le, P., Ma, L., Entenberg, D., Harney, A.S., Condeelis, J., Smith, A.M., Brightness-equalized quantum dots (2015) Nat Commun, 6, p. 8210
  • Holmstrom, K.M., Finkel, T., Cellular mechanisms and physiological consequences of redox-dependent signalling (2014) Nat Rev Mol Cell Biol, 15, pp. 411-421
  • Finkel, T., Signal transduction by reactive oxygen species (2011) J Cell Biol, 194, pp. 7-15
  • Magidson, V., Khodjakov, A., Circumventing photodamage in live-cell microscopy (2013) Methods Cell Biol, 114, pp. 545-560
  • Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H., Karin, M., Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases (2005) Cell, 120, pp. 649-661
  • Dickinson, M.E., Bearman, G., Tille, S., Lansford, R., Fraser, S.E., Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy (2001) Biotechniques, 31, pp. 1272, 1274-1276, 1278
  • Garini, Y., Young, I.T., McNamara, G., Spectral imaging: Principles and applications (2006) Cytometry A, 69, pp. 735-747
  • Li, Q., He, X., Wang, Y., Liu, H., Xu, D., Guo, F., Review of spectral imaging technology in biomedical engineering: Achievements and challenges (2013) J Biomed Opt, 18, p. 100901
  • Tsurui, H., Nishimura, H., Hattori, S., Hirose, S., Okumura, K., Shirai, T., Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition (2000) J Histochem Cytochem, 48, pp. 653-662
  • Zimmermann, T., Spectral imaging and linear unmixing in light microscopy (2005) Adv Biochem Eng Biotechnol, 95, pp. 245-265
  • Zimmermann, T., Rietdorf, J., Pepperkok, R., Spectral imaging and its applications in live cell microscopy (2003) FEBS Lett, 546, pp. 87-92
  • Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J., Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches (2012) IEEE J Select Top Appl Earth Observ Remote Sens, 5, pp. 354-379
  • Keshava, N., A survey of spectral unmixing algorithms (2003) Lincolin Lab J, 14, pp. 55-78
  • Hoppe, A.D., Shorte, S.L., Swanson, J.A., Heintzmann, R., Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells (2008) Biophys J, 95, pp. 400-418
  • Bayani, J., Squire, J., Multi-color FISH techniques (2004) Curr Protoc Cell Biol, , Chapter 22Unit 22 5
  • Geigl, J.B., Uhrig, S., Speicher, M.R., Multiplex-fluorescence in situ hybridization for chromosome karyotyping (2006) Nat Protoc, 1, pp. 1172-1184
  • Imataka, G., Arisaka, O., Chromosome analysis using spectral karyotyping (SKY) (2012) Cell Biochem Biophys, 62, pp. 13-17
  • Schrock, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M.A., Ning, Y., Soenksen, D., Multicolor spectral karyotyping of human chromosomes (1996) Science, 273, pp. 494-497
  • Speicher, M.R., Gwyn Ballard, S., Ward, D.C., Karyotyping human chromosomes by combinatorial multi-fluor FISH (1996) Nat Genet, 12, pp. 368-375
  • Anderson, R., Multiplex fluorescence in situ hybridization (M-FISH) (2010) Methods Mol Biol, 659, pp. 83-97
  • Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., Semiconductor nanocrystals as fluorescent biological labels (1998) Science, 281, pp. 2013-2016
  • Chan, W.C., Nie, S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection (1998) Science, 281, pp. 2016-2018
  • Service, R.F., Semiconductor beacons light up cell structures (1998) Science, 281, pp. 1930-1931
  • Hotz, C.Z., Applications of quantum dots in biology: An overview (2005) Methods Mol Biol, 303, pp. 1-17
  • Alivisatos, A.P., Gu, W., Larabell, C., Quantum dots as cellular probes (2005) Annu Rev Biomed Eng, 7, pp. 55-76
  • Jaiswal, J.K., Simon, S.M., Potentials and pitfalls of fluorescent quantum dots for biological imaging (2004) Trends Cell Biol, 14, pp. 497-504
  • Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T., Quantum dots versus organic dyes as fluorescent labels (2008) Nat Methods, 5, pp. 763-775
  • Parak, W.J., Pellegrino, T., Plank, C., Labelling of cells with quantum dots (2005) Nanotechnology, 16, pp. R9-R25
  • Goldman, E.R., Clapp, A.R., Anderson, G.P., Uyeda, H.T., Mauro, J.M., Medintz, I.L., Mattoussi, H., Multiplexed toxin analysis using four colors of quantum dot fluororeagents (2004) Anal Chem, 76, pp. 684-688
  • Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Bruchez, M.P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots (2003) Nat Biotechnol, 21, pp. 41-46
  • Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., Klinov, D., Nabiev, I., Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells (2004) Anal Biochem, 324, pp. 60-67
  • Xing, Y., Chaudry, Q., Shen, C., Kong, K.Y., Zhau, H.E., Chung, L.W., Petros, J.A., Simons, J.W., Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry (2007) Nat Protoc, 2, pp. 1152-1165. , And others
  • Zrazhevskiy, P., True, L.D., Gao, X., Multicolor multicycle molecular profiling with quantum dots for single-cell analysis (2013) Nat Protoc, 8, pp. 1852-1869
  • Zrazhevskiy, P., Gao, X., Quantum dot imaging platform for single-cell molecular profiling (2013) Nat Commun, 4, p. 1619
  • Smith, A.M., Dave, S., Nie, S., True, L., Gao, X., Multicolor quantum dots for molecular diagnostics of cancer (2006) Expert Rev Mol Diagn, 6, pp. 231-244
  • Boncompain, G., Divoux, S., Gareil, N., de Forges, H., Lescure, A., Latreche, L., Mercanti, V., Perez, F., Synchronization of secretory protein traffic in populations of cells (2012) Nat Methods, 9, pp. 493-498
  • Schubert, W., Topological proteomics, toponomics, MELK-technology (2003) Adv Biochem Eng Biotechnol, 83, pp. 189-209
  • Koczan, D., Thiesen, H.J., Survey of microarray technologies suitable to elucidate transcriptional networks as exemplified by studying KRAB zinc finger gene families (2006) Proteomics, 6, pp. 4704-4715
  • Schubert, W., Exploring molecular networks directly in the cell (2006) Cytometry A, pp. 109-112
  • Schubert, W., Bonnekoh, B., Pommer, A.J., Philipsen, L., Bockelmann, R., Malykh, Y., Gollnick, H., Dress, A.W., Analyzing proteome topology and function by automated multidimensional fluorescence microscopy (2006) Nat Biotechnol, 24, pp. 1270-1278
  • Gerner, M.Y., Kastenmuller, W., Ifrim, I., Kabat, J., Germain, R.N., Histo-cytometry: A method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes (2012) Immunity, 37, pp. 364-376
  • Gerner, M.Y., Torabi-Parizi, P., Germain, R.N., Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens (2015) Immunity, 42, pp. 172-185
  • Hollman-Hewgley, D., Lazare, M., Bordwell, A., Zebadua, E., Tripathi, P., Ross, A.S., Fisher, D., O'Malley, D.P., A single slide multiplex assay for the evaluation of classical Hodgkin lymphoma (2014) Am J Surg Pathol, 38, pp. 1193-1202
  • Li, C., Ma, H., Wang, Y., Cao, Z., Graves-Deal, R., Powell, A.E., Starchenko, A., Kamath, V., Excess PLAC8 promotes an unconventional ERK2-dependent EMT in colon cancer (2014) J Clin Invest, 124, pp. 2172-2187
  • Gerdes, M.J., Sevinsky, C.J., Sood, A., Adak, S., Bello, M.O., Bordwell, A., Can, A., Filkins, R.J., Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue (2013) Proc Natl Acad Sci U S A, 110, pp. 11982-11987
  • Schubert, W., Gieseler, A., Krusche, A., Serocka, P., Hillert, R., Next-generation biomarkers based on 100-parameter functional super-resolution microscopy TIS (2012) Nat Biotechnol, 29, pp. 599-610
  • Bhattacharya, S., Mathew, G., Ruban, E., Epstein, D.B., Krusche, A., Hillert, R., Schubert, W., Khan, M., Toponome imaging system: In situ protein network mapping in normal and cancerous colon from the same patient reveals more than five-thousand cancer specific protein clusters and their subcellular annotation by using a three symbol code (2010) J Proteome Res, 9, pp. 6112-6125
  • Schubert, W., Gieseler, A., Krusche, A., Hillert, R., Toponome mapping in prostate cancer: Detection of 2000 cell surface protein clusters in a single tissue section and cell type specific annotation by using a three symbol code (2009) J Proteome Res, 8, pp. 2696-2707
  • Schubert, W., A three-symbol code for organized proteomes based on cyclical imaging of protein locations (2007) Cytometry A, 71, pp. 352-360
  • Schubert, W., Advances in toponomics drug discovery: Imaging cycler microscopy correctly predicts a therapy method of amyotrophic lateral sclerosis (2015) Cytometry A, 87A, pp. 696-703
  • Pierre, S., Scholich, K., Toponomics: Studying protein-protein interactions and protein networks in intact tissue (2010) Mol Biosyst, 6, pp. 641-647
  • Schubert, W., Friedenberger, M., Bode, M., Krusche, A., Hillert, R., Functional architecture of the cell nucleus: Towards comprehensive toponome reference maps of apoptosis (2008) Biochim Biophys Acta, 1783, pp. 2080-2088
  • Lin, J.R., Fallahi-Sichani, M., Sorger, P.K., Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method (2015) Nat Commun, 6, p. 8390
  • Kreis, T.E., Winterhalter, K.H., Birchmeier, W., In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts (1979) Proc Natl Acad Sci U S A, 76, pp. 3814-3818
  • Kreis, T.E., Preparation, assay, and microinjection of fluorescently labeled cytoskeletal proteins: Actin, alpha-actinin, and vinculin (1986) Methods Enzymol, 134, pp. 507-519
  • Kreis, T.E., Birchmeier, W., Microinjection of fluorescently labeled proteins into living cells with emphasis on cytoskeletal proteins (1982) Int Rev Cytol, 75, pp. 209-214
  • Wehland, J., Weber, K., Distribution of fluorescently labeled actin and tropomyosin after microinjection in living tissue culture cells as observed with TV image intensification (1980) Exp Cell Res, 127, pp. 397-408
  • Feramisco, J.R., Microinjection of fluorescently labeled alpha-actinin into living fibroblasts (1979) Proc Natl Acad Sci U S A, 76, pp. 3967-3971
  • Glacy, S.D., Subcellular distribution of rhodamine-actin microinjected into living fibroblastic cells (1983) J Cell Biol, 97, pp. 1207-1213
  • Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., Cormier, M.J., Primary structure of the Aequorea victoria green-fluorescent protein (1992) Gene, 111, pp. 229-233
  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C., Green fluorescent protein as a marker for gene expression (1994) Science, 263, pp. 802-805
  • Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., Remington, S.J., Crystal structure of the Aequorea victoria green fluorescent protein (1996) Science, 273, pp. 1392-1395
  • Yang, F., Moss, L.G., Phillips, G.N., Jr., The molecular structure of green fluorescent protein (1996) Nat Biotechnol, 14, pp. 1246-1251
  • Misteli, T., Spector, D.L., Applications of the green fluorescent protein in cell biology and biotechnology (1997) Nat Biotechnol, 15, pp. 961-964
  • Shaner, N.C., Steinbach, P.A., Tsien, R.Y., A guide to choosing fluorescent proteins (2005) Nat Methods, 2, pp. 905-909
  • Shaner, N.C., Patterson, G.H., Davidson, M.W., Advances in fluorescent protein technology (2007) J Cell Sci, 120, pp. 4247-4260
  • Dean, K.M., Palmer, A.E., Advances in fluorescence labeling strategies for dynamic cellular imaging (2014) Nat Chem Biol, 10, pp. 512-523
  • Muller-Taubenberger, A., Anderson, K.I., Recent advances using green and red fluorescent protein variants (2007) Appl Microbiol Biotechnol, 77, pp. 1-12
  • Olenych, S.G., Claxton, N.S., Ottenberg, G.K., Davidson, M.W., The fluorescent protein color palette (2007) Curr Protoc Cell Biol, , Chapter 21Unit 21 5
  • Matz, M.V., Lukyanov, K.A., Lukyanov, S.A., Family of the green fluorescent protein: Journey to the end of the rainbow (2002) Bioessays, 24, pp. 953-959
  • Chudakov, D.M., Matz, M.V., Lukyanov, S., Lukyanov, K.A., Fluorescent proteins and their applications in imaging living cells and tissues (2010) Physiol Rev, 90, pp. 1103-1163
  • DeBiasio, R., Bright, G.R., Ernst, L.A., Waggoner, A.S., Taylor, D.L., Five-parameter fluorescence imaging: Wound healing of living Swiss 3T3 cells (1987) J Cell Biol, 105, pp. 1613-1622
  • Grimm, J.B., English, B.P., Chen, J., Slaughter, J.P., Zhang, Z., Revyakin, A., Patel, R., Singer, R.H., A general method to improve fluorophores for live-cell and single-molecule microscopy (2015) Nat Methods, 12, pp. 244-250
  • Hoffmann, C., Gaietta, G., Zurn, A., Adams, S.R., Terrillon, S., Ellisman, M.H., Tsien, R.Y., Lohse, M.J., Fluorescent labeling of tetracysteine-tagged proteins in intact cells (2010) Nat Protoc, 5, pp. 1666-1677
  • Crivat, G., Taraska, J.W., Imaging proteins inside cells with fluorescent tags (2012) Trends Biotechnol, 30, pp. 8-16
  • Jing, C., Cornish, V.W., Chemical tags for labeling proteins inside living cells (2011) Acc Chem Res, 44, pp. 784-792
  • Griffin, B.A., Adams, S.R., Tsien, R.Y., Specific covalent labeling of recombinant protein molecules inside live cells (1998) Science, 281, pp. 269-272
  • Adams, S.R., Campbell, R.E., Gross, L.A., Martin, B.R., Walkup, G.K., Yao, Y., Llopis, J., Tsien, R.Y., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications (2002) J Am Chem Soc, 124, pp. 6063-6076
  • O'Hare, H.M., Johnsson, K., Gautier, A., Chemical probes shed light on protein function (2007) Curr Opin Struct Biol, 17, pp. 488-494
  • Zurn, A., Klenk, C., Zabel, U., Reiner, S., Lohse, M.J., Hoffmann, C., Site-specific, orthogonal labeling of proteins in intact cells with two small biarsenical fluorophores (2010) Bioconjug Chem, 21, pp. 853-859
  • Gautier, A., Juillerat, A., Heinis, C., Correa, I.R., Jr., Kindermann, M., Beaufils, F., Johnsson, K., An engineered protein tag for multiprotein labeling in living cells (2008) Chem Biol, 15, pp. 128-136
  • Los, G.V., Encell, L.P., McDougall, M.G., Hartzell, D.D., Karassina, N., Zimprich, C., Wood, M.G., Urh, M., HaloTag: A novel protein labeling technology for cell imaging and protein analysis (2008) ACS Chem Biol, 3, pp. 373-382
  • Lukinavicius, G., Reymond, L., Johnsson, K., Fluorescent labeling of SNAP-tagged proteins in cells (2015) Methods Mol Biol, 1266, pp. 107-118
  • Hinner, M.J., Johnsson, K., How to obtain labeled proteins and what to do with them (2010) Curr Opin Biotechnol, 21, pp. 766-776
  • Knight, S.C., Xie, L., Deng, W., Guglielmi, B., Witkowsky, L.B., Bosanac, L., Zhang, E.T., Dahan, M., Dynamics of CRISPR-Cas9 genome interrogation in living cells (2015) Science, 350, pp. 823-826
  • Lai, Y.T., Chang, Y.Y., Hu, L., Yang, Y., Chao, A., Du, Z.Y., Tanner, J.A., Ng, K.M., Rapid labeling of intracellular His-tagged proteins in living cells (2015) Proc Natl Acad Sci U S A, 112, pp. 2948-2953
  • Stagge, F., Mitronova, G.Y., Belov, V.N., Wurm, C.A., Jakobs, S., SNAP-, CLIP- and Halo-tag labelling of budding yeast cells (2013) PLoS One, 8
  • Wilmes, S., Staufenbiel, M., Lisse, D., Richter, C.P., Beutel, O., Busch, K.B., Hess, S.T., Piehler, J., Triple-color super-resolution imaging of live cells: Resolving submicroscopic receptor organization in the plasma membrane (2012) Angew Chem Int Ed Engl, 51, pp. 4868-4871
  • Pellett, P.A., Sun, X., Gould, T.J., Rothman, J.E., Xu, M.Q., Correa, I.R., Jr., Bewersdorf, J., Two-color STED microscopy in living cells (2011) Biomed Opt Express, 2, pp. 2364-2371
  • Klein, T., Loschberger, A., Proppert, S., Wolter, S., van de Linde, S., Sauer, M., Live-cell dSTORM with SNAP-tag fusion proteins (2011) Nat Methods, 8, pp. 7-9
  • Jones, S.A., Shim, S.H., He, J., Zhuang, X., Fast, three-dimensional super-resolution imaging of live cells (2011) Nat Methods, 8, pp. 499-508
  • Hayashi-Takanaka, Y., Yamagata, K., Wakayama, T., Stasevich, T.J., Kainuma, T., Tsurimoto, T., Tachibana, M., Nozaki, N., Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling (2011) Nucleic Acids Res, 39, pp. 6475-6488
  • Stasevich, T.J., Hayashi-Takanaka, Y., Sato, Y., Maehara, K., Ohkawa, Y., Sakata-Sogawa, K., Tokunaga, M., McNally, J.G., Regulation of RNA polymerase II activation by histone acetylation in single living cells (2014) Nature, 516, pp. 272-275
  • McNeil, P.L., Warder, E., Glass beads load macromolecules into living cells (1987) J Cell Sci, 88, pp. 669-678
  • Kimura, H., Hayashi-Takanaka, Y., Stasevich, T.J., Sato, Y., Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo (2015) Histochem Cell Biol, 144, pp. 101-109
  • Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., Vale, R.D., A protein-tagging system for signal amplification in gene expression and fluorescence imaging (2014) Cell, 159, pp. 635-646
  • Ries, J., Schwille, P., Fluorescence correlation spectroscopy (2012) Bioessays, 34, pp. 361-368
  • Hoffmann, J.E., Fermin, Y., Stricker, R.L., Ickstadt, K., Zamir, E., Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol (2014) Elife, 3
  • Zamir, E., Lommerse, P.H., Kinkhabwala, A., Grecco, H.E., Bastiaens, P.I., Fluorescence fluctuations of quantum-dot sensors capture intracellular protein interaction dynamics (2010) Nat Methods, 7, pp. 295-298
  • Bacia, K., Kim, S.A., Schwille, P., Fluorescence cross-correlation spectroscopy in living cells (2006) Nat Methods, 3, pp. 83-89
  • Bacia, K., Schwille, P., Practical guidelines for dual-color fluorescence cross-correlation spectroscopy (2007) Nat Protoc, 2, pp. 2842-2856
  • Hwang, L.C., Gosch, M., Lasser, T., Wohland, T., Simultaneous multicolor fluorescence cross-correlation spectroscopy to detect higher order molecular interactions using single wavelength laser excitation (2006) Biophys J, 91, pp. 715-727
  • Blades, M.L., Grekova, E., Wobma, H.M., Chen, K., Chan, W.C., Cramb, D.T., Three-color fluorescence cross-correlation spectroscopy for analyzing complex nanoparticle mixtures (2012) Anal Chem, 84, pp. 9623-9631
  • Wobma, H.M., Blades, M.L., Grekova, E., McGuire, D.L., Chen, K., Chan, W.C., Cramb, D.T., The development of direct multicolour fluorescence cross-correlation spectroscopy: Towards a new tool for tracking complex biomolecular events in real-time (2012) Phys Chem Chem Phys, 14, p. 32904
  • Heinze, K.G., Jahnz, M., Schwille, P., Triple-color coincidence analysis: One step further in following higher order molecular complex formation (2004) Biophys J, 86, pp. 506-516
  • Hur, K.H., Chen, Y., Mueller, J.D., Characterization of ternary protein systems in vivo with tricolor heterospecies partition analysis (2016) Biophys J, 110, pp. 1158-1167
  • Chen, Y., Muller, J.D., Determining the stoichiometry of protein heterocomplexes in living cells with fluorescence fluctuation spectroscopy (2007) Proc Natl Acad Sci U S A, 104, pp. 3147-3152
  • Chen, Y., Johnson, J., Macdonald, P., Wu, B., Mueller, J.D., Observing protein interactions and their stoichiometry in living cells by brightness analysis of fluorescence fluctuation experiments (2010) Methods Enzymol, 472, pp. 345-363
  • Digman, M.A., Gratton, E., Analysis of diffusion and binding in cells using the RICS approach (2009) Microsc Res Tech, 72, pp. 323-332
  • Kolin, D.L., Wiseman, P.W., Advances in image correlation spectroscopy: Measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells (2007) Cell Biochem Biophys, 49, pp. 141-164
  • Krieger, J.W., Singh, A.P., Bag, N., Garbe, C.S., Saunders, T.E., Langowski, J., Wohland, T., Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms (2015) Nat Protoc, 10, pp. 1948-1974
  • Dorlich, R.M., Chen, Q., Niklas Hedde, P., Schuster, V., Hippler, M., Wesslowski, J., Davidson, G., Nienhaus, G.U., Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens (2015) Sci Rep, 5, p. 10149
  • Hendrix, J., Lamb, D.C., Implementation and application of pulsed interleaved excitation for dual-color FCS and RICS (2014) Methods Mol Biol, 1076, pp. 653-682
  • Digman, M.A., Wiseman, P.W., Choi, C., Horwitz, A.R., Gratton, E., Stoichiometry of molecular complexes at adhesions in living cells (2009) Proc Natl Acad Sci U S A, 106, pp. 2170-2175
  • Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R., Geiger, B., Functional atlas of the integrin adhesome (2007) Nat Cell Biol, 9, pp. 858-867
  • Legate, K.R., Montanez, E., Kudlacek, O., Fassler, R., ILK, PINCH and parvin: The tIPP of integrin signalling (2006) Nat Rev Mol Cell Biol, 7, pp. 20-31
  • Chorev, D.S., Moscovitz, O., Geiger, B., Sharon, M., Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex (2014) Nat Commun, 5, p. 3758
  • Koster, J., Zamir, E., Rahmann, S., Efficiently mining protein interaction dependencies from large text corpora (2012) Integr Biol (Camb), 4, pp. 805-812
  • McKay, M.M., Ritt, D.A., Morrison, D.K., Signaling dynamics of the KSR1 scaffold complex (2009) Proc Natl Acad Sci U S A, 106, pp. 11022-11027
  • Maeder, C.I., Hink, M.A., Kinkhabwala, A., Mayr, R., Bastiaens, P.I., Knop, M., Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling (2007) Nat Cell Biol, 9, pp. 1319-1326
  • Hell, S.W., Wichmann, J., Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy (1994) Opt Lett, 19, pp. 780-782
  • Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Hess, H.F., Imaging intracellular fluorescent proteins at nanometer resolution (2006) Science, 313, pp. 1642-1645
  • Betzig, E., Proposed method for molecular optical imaging (1995) Opt Lett, 20, pp. 237-239
  • Dickson, R.M., Cubitt, A.B., Tsien, R.Y., Moerner, W.E., On/off blinking and switching behaviour of single molecules of green fluorescent protein (1997) Nature, 388, pp. 355-358
  • Galbraith, C.G., Galbraith, J.A., Super-resolution microscopy at a glance (2011) J Cell Sci, 124, pp. 1607-1611
  • Tam, J., Cordier, G.A., Borbely, J.S., Sandoval Alvarez, A., Lakadamyali, M., Cross-talk-free multi-color STORM imaging using a single fluorophore (2014) PLoS One, 9
  • Valley, C.C., Liu, S., Lidke, D.S., Lidke, K.A., Sequential superresolution imaging of multiple targets using a single fluorophore (2015) PLoS One, 10
  • Jungmann, R., Avendano, M.S., Woehrstein, J.B., Dai, M., Shih, W.M., Yin, P., Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT (2014) Nat Methods, 11, pp. 313-318
  • Bates, M., Huang, B., Dempsey, G.T., Zhuang, X., Multicolor super-resolution imaging with photo-switchable fluorescent probes (2007) Science, 317, pp. 1749-1753
  • Zhang, Z., Kenny, S.J., Hauser, M., Li, W., Xu, K., Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy (2015) Nat Methods, 12, pp. 935-938
  • Han, K.Y., Ha, T., Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser (2015) Opt Lett, 40, pp. 2653-2656
  • Osseforth, C., Moffitt, J.R., Schermelleh, L., Michaelis, J., Simultaneous dual-color 3D STED microscopy (2014) Opt Express, 22, pp. 7028-7039
  • Buckers, J., Wildanger, D., Vicidomini, G., Kastrup, L., Hell, S.W., Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses (2011) Opt Express, 19, pp. 3130-3143
  • Godin, A.G., Lounis, B., Cognet, L., Super-resolution microscopy approaches for live cell imaging (2010) Biophys J, 107, pp. 1777-1784
  • Fernandez-Suarez, M., Ting, A.Y., Fluorescent probes for super-resolution imaging in living cells (2008) Nat Rev Mol Cell Biol, 9, pp. 929-943
  • Testa, I., Wurm, C.A., Medda, R., Rothermel, E., von Middendorf, C., Folling, J., Jakobs, S., Eggeling, C., Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength (2010) Biophys J, 99, pp. 2686-2694
  • Bossi, M., Folling, J., Belov, V.N., Boyarskiy, V.P., Medda, R., Egner, A., Eggeling, C., Hell, S.W., Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species (2008) Nano Lett, 8, pp. 2463-2468
  • Schonle, A., Hell, S.W., Fluorescence nanoscopy goes multicolor (2007) Nat Biotechnol, 25, pp. 1234-1235
  • Shim, S.H., Xia, C., Zhong, G., Babcock, H.P., Vaughan, J.C., Huang, B., Wang, X., Zhuang, X., Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes (2012) Proc Natl Acad Sci U S A, 109, pp. 13978-13983
  • Tonnesen, J., Nadrigny, F., Willig, K.I., Wedlich-Soldner, R., Nagerl, U.V., Two-color STED microscopy of living synapses using a single laser-beam pair (2011) Biophys J, 101, pp. 2545-2552
  • Levine, J.H., Simonds, E.F., Bendall, S.C., Davis, K.L., Amir el, A.D., Tadmor, M.D., Litvin, O., Zunder, E.R., Data-driven phenotypic dissection of aml reveals progenitor-like cells that correlate with prognosis (2015) Cell, 162, pp. 184-197
  • Ferrell, J.E., Jr., Ha, S.H., Ultrasensitivity part III: Cascades, bistable switches, and oscillators (2014) Trends Biochem Sci, 39, pp. 612-618
  • Perret, E., Lakkaraju, A., Deborde, S., Schreiner, R., Rodriguez-Boulan, E., Evolving endosomes: How many varieties and why? (2005) Curr Opin Cell Biol, 17, pp. 423-434
  • Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C.G., Brent, R., Regulated cell-to-cell variation in a cell-fate decision system (2005) Nature, 437, pp. 699-706
  • Grecco, H.E., Roda-Navarro, P., Girod, A., Hou, J., Frahm, T., Truxius, D.C., Pepperkok, R., Bastiaens, P.I., In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays (2010) Nat Methods, 7, pp. 467-472
  • Altschuler, S.J., Wu, L.F., Cellular heterogeneity: Do differences make a difference? (2010) Cell, 141, pp. 559-563
  • Munsky, B., Neuert, G., van Oudenaarden, A., Using gene expression noise to understand gene regulation (2012) Science, 336, pp. 183-187
  • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A., Nolan, G.P., causal protein-signaling networks derived from multiparameter single-cell data (2005) Science, 308, pp. 523-529
  • Elliott, G.S., Moving pictures: Imaging flow cytometry for drug development (2009) Comb Chem High Throughput Screen, 12, pp. 849-859
  • Barteneva, N.S., Fasler-Kan, E., Vorobjev, I.A., Imaging flow cytometry: Coping with heterogeneity in biological systems (2012) J Histochem Cytochem, 60, pp. 723-733
  • Samsel, L., McCoy, J.P., Jr., Imaging flow cytometry for the study of erythroid cell biology and pathology (2015) J Immunol Methods, 423, pp. 52-59
  • van der Aar, A.M., Picavet, D.I., Muller, F.J., de Boer, L., van Capel, T.M., Zaat, S.A., Bos, J.D., Kapsenberg, M.L., Langerhans cells favor skin flora tolerance through limited presentation of bacterial antigens and induction of regulatory T cells (2013) J Invest Dermatol, 133, pp. 1240-1249
  • Neumann, B., Walter, T., Heriche, J.-K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Liebel, U., Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes (2010) Nature, 464, pp. 721-727
  • Simpson, J.C., Joggerst, B., Laketa, V., Verissimo, F., Cetin, C., Erfle, H., Bexiga, M.G., Neumann, B., Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway (2012) Nat Cell Biol, pp. 764-774
  • Naffar-Abu-Amara, S., Shay, T., Galun, M., Cohen, N., Isakoff, S.J., Kam, Z., Geiger, B., Identification of novel pro-migratory, cancer-associated genes using quantitative, microscopy-based screening (2008) PLoS One, 3
  • Winograd-Katz, S.E., Itzkovitz, S., Kam, Z., Geiger, B., Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown (2009) J Cell Biol, 186, pp. 423-436
  • Paran, Y., Ilan, M., Kashman, Y., Goldstein, S., Liron, Y., Geiger, B., Kam, Z., High-throughput screening of cellular features using high-resolution light-microscopy;application for profiling drug effects on cell adhesion (2007) J Struct Biol, 158, pp. 233-243
  • Esposito, A., Dohm, C.P., Bahr, M., Wouters, F.S., Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening (2007) Mol Cell Proteom, 6, pp. 1446-1454
  • Grecco, H.E., Roda-Navarro, P., Verveer, P.J., Global analysis of time correlated single photon counting FRET-FLIM data (2009) Opt Express, 17, pp. 6493-6508
  • Squire, A., Verveer, P.J., Rocks, O., Bastiaens, P.I., Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells (2004) J Struct Biol, 147, pp. 62-69
  • Warren, S.C., Margineanu, A., Katan, M., Dunsby, C., French, P.M., Homo-FRET based biosensors and their application to multiplexed imaging of signalling events in live cells (2015) Int J Mol Sci, 16, pp. 14695-14716
  • Ghosh, S., Saha, S., Goswami, D., Bilgrami, S., Mayor, S., Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy (2012) Methods Enzymol, 505, pp. 291-327
  • Bader, A.N., Hofman, E.G., Voortman, J., en Henegouwen, P.M., Gerritsen, H.C., Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution (2009) Biophys J, 97, pp. 2613-2622
  • de Heus, C., Kagie, N., Heukers, R., van Bergen en Henegouwen, P.M., Gerritsen, H.C., Analysis of EGF receptor oligomerization by homo-FRET (2013) Methods Cell Biol, 117, pp. 305-321
  • Wachsmuth, M., Conrad, C., Bulkescher, J., Koch, B., Mahen, R., Isokane, M., Pepperkok, R., Ellenberg, J., High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells (2015) Nat Biotech, pp. 384-389
  • Gualda, E.J., Pereira, H., Vale, T., Estrada, M.F., Brito, C., Moreno, N., SPIM-fluid: Open source light-sheet based platform for high-throughput imaging (2015) Biomedical Optics Express, pp. 4447-4456
  • Savall, J., Ho, E.T.W., Huang, C., Maxey, J.R., Schnitzer, M.J., Dexterous robotic manipulation of alert adult Drosophila for high-content experimentation (2015) Nat Meth, pp. 657-660
  • Hsu, P.D., Lander, E.S., Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering (2014) Cell, 157, pp. 1262-1278
  • Mali, P., Esvelt, K.M., Church, G.M., Cas9 as a versatile tool for engineering biology (2013) Nat Methods, 10, pp. 957-963
  • Vandemoortele, G., Gevaert, K., Eyckerman, S., Proteomics in the genome engineering era (2016) Proteomics, 16, pp. 177-187
  • Doudna, J.A., Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR-Cas9 (2014) Science, 346, p. 1258096
  • Mamoshina, P., Vieira, A., Putin, E., Zhavoronkov, A., Applications of deep learning in biomedicine (2016) Mol Pharm, 13, pp. 1445-1454
  • Chen, C.L., Mahjoubfar, A., Tai, L.C., Blaby, I.K., Huang, A., Niazi, K.R., Jalali, B., Deep Learning in Label-free Cell Classification (2016) Sci Rep, 6, p. 21471
  • Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Lanctot, M., Mastering the game of Go with deep neural networks and tree search (2016) Nature, 529, pp. 484-489
  • Kraus, O.Z., Frey, B.J., Computer vision for high content screening (2016) Crit Rev Biochem Mol Biol, 51, pp. 102-109
  • Ghahramani, Z., Probabilistic machine learning and artificial intelligence (2015) Nature, 521, pp. 452-459

Citas:

---------- APA ----------
Grecco, H.E., Imtiaz, S. & Zamir, E. (2016) . Multiplexed imaging of intracellular protein networks. Cytometry Part A, 89(8), 761-775.
http://dx.doi.org/10.1002/cyto.a.22876
---------- CHICAGO ----------
Grecco, H.E., Imtiaz, S., Zamir, E. "Multiplexed imaging of intracellular protein networks" . Cytometry Part A 89, no. 8 (2016) : 761-775.
http://dx.doi.org/10.1002/cyto.a.22876
---------- MLA ----------
Grecco, H.E., Imtiaz, S., Zamir, E. "Multiplexed imaging of intracellular protein networks" . Cytometry Part A, vol. 89, no. 8, 2016, pp. 761-775.
http://dx.doi.org/10.1002/cyto.a.22876
---------- VANCOUVER ----------
Grecco, H.E., Imtiaz, S., Zamir, E. Multiplexed imaging of intracellular protein networks. Cytometry Part A. 2016;89(8):761-775.
http://dx.doi.org/10.1002/cyto.a.22876