Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We consider a family of exact boost invariant solutions of the transport equation for free-streaming massless particles, where the one-particle distribution function is defined in terms of a function of a single variable. The evolution of second and third moments of the one-particle distribution function [the second moment being the energy momentum tensor (EMT) and the third moment the nonequilibrium current (NEC)] depends only on two moments of that function. Given those two moments, we show how to build a nonlinear hydrodynamic theory which reproduces the early time evolution of the EMT and the NEC. The structure of these theories may give insight on nonlinear hydrodynamic phenomena on short time scales. © 2015 American Physical Society.

Registro:

Documento: Artículo
Título:Hydrodynamic approach to boost invariant free streaming
Autor:Calzetta, E.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA, CONICET, Cuidad Universitaria, Buenos Aires, 1428, Argentina
Año:2015
Volumen:92
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevD.92.045035
Título revista:Physical Review D - Particles, Fields, Gravitation and Cosmology
Título revista abreviado:Phys Rev D Part Fields Gravit Cosmol
ISSN:15507998
CODEN:PRVDA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v92_n4_p_Calzetta

Referencias:

  • Quark-gluon plasma and color glass condensate at RHIC? the perspective from the BRAHMS experiment (2005) Nucl. Phys., A757, p. 1. , BRAHMS Collaboration
  • The PHOBOS perspective on discoveries at RHIC (2005) Nucl. Phys., A757, p. 28. , PHOBOS Collaboration
  • Experimental and theoretical challenges in the search for the quark-gluon plasma: The STAR Collaboration's critical assesment of the evidence from RHIC collisions (2005) Nucl. Phys., A757, p. 102. , STAR Collaboration
  • Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration (2005) Nucl. Phys., A757, p. 184. , PHENIX Collaboration
  • Vogt, R., (2007) Ultrarelativistic Heavy-Ion Collisions, , (Elsevier, New York)
  • Sarkar, S., Satz, H., Dinha, B., (2010) The Physics of the Quark-Gluon Plasma, , edited by,. and (Springer-Verlag, Berlin)
  • Isral, W., Anile, A., Choquet, Y., (1988) Relativistic Fluid Dynamics, , edited by, (Springer, New York)
  • Bjorken, J.D., Highly relativistic nucleus-nucleus collisions: The central rapidity region (1983) Phys. Rev. D, 27, p. 140
  • Ruuskanen, P.V., Transverse hydrodynamics with a first order phase transition in very high energy nuclear collisions (1987) Acta Phys. Pol. B, 18, p. 551
  • Rischke, D., Fluid dynamics for relativistic nuclear collisions (1998) Proceedings of the 11th Chris Engelbrecht Summer School in Theoretical Physics, Cape Town, 1998, p. 516. , edited by J. Cleymans, H.B. Geyer, and F.G. Scholtz (Springer, Berlin)
  • Calzetta, E., Hu, B.-L., (2008) Nonequilibrium Quantum Field Theory, , (Cambridge University Press, Cambridge, England)
  • Hirano, T., Van Der Kolk, N., Bilandzic, A., Hydrodynamics and flow (2010) The Physics of the Quark-Gluon Plasma, 785, p. 139. , edited by S. Sarkar, H. Satz, and B. Sinha (Springer, Berlin), Lecture Notes in Physics Vol
  • Romatschke, P., New developments in relativistic viscous hydrodynamics (2010) Int. J. Mod. Phys., 19, p. 1
  • Hirano, T., Nara, Y., Dynamical modeling of high energy heavy ion collisions Prog. Theor. Exp. Phys., 2012, p. 01A203
  • Gale, C., Jeon, S., Schenke, B., Hydrodynamic Modeling of Heavy-Ion Collisions (2013) Int. J. Mod. Phys. A, 28, p. 1340011
  • Huovinen, P., Hydrodynamics at RHIC and LHC: What have we learned? (2013) Int. J. Mod. Phys. e, 22, p. 1330029
  • Hirano, T., Theory summary (2014) Nucl. Phys., A926, p. 220
  • Calzetta, E., Real relativistic fluids in heavy ion collisions (2013) Proceedings of Summer School on Geometric, Algebraic and Topological Methods for Quantum Field Theory, , (Villa de Leyva Colombia), arXiv:1310.0841
  • Jeon, S., Heinz, U., Introduction to Hydrodynamics Quark-Gluon Plasma 5, , edited by X.-N. Wang (World Scientific, Singapore) 2016
  • Strickland, M., Thermalization and isotropization in heavy-ion collisions (2015) Pramana, 84, p. 671
  • Gelis, F., The initial stages of heavy-ion collisions in the Color Glass Condensate framework (2015) Pramana, 84, p. 685
  • Epelbaum, T., Gelis, F., Isotropization of the quark-gluon plasma (2014) Nucl. Phys., A926, p. 122
  • Mrowczynski, S., Color collective effects at the early stage of ultrarelativistic heavy-ion collisions (1994) Phys. Rev. C, 49, p. 2191
  • Mrowczynski, S., Chromo-hydrodynamics of the quark-gluon plasma (2007) Nucl. Phys., A785, p. 128
  • Manuel, C., Mrowczynski, S., Chromohydrodynamic approach to the unstable quark-gluon plasma (2006) Phys. Rev. D, 74, p. 105003
  • Schenke, B., Strickland, M., Greiner, C., Thoma, M.H., Model of the effect of collisions on QCD plasma instabilities (2006) Phys. Rev. D, 73, p. 125004
  • Mrowczynski, S., Thoma, M.H., What do electromagnetic plasmas tell us about the quark-gluon plasma? (2007) Annu. Rev. Nucl. Part. Sci., 57, p. 61
  • Mannarelli, M., Manuel, C., Chromohydrodynamical instabilities induced by relativistic jets (2007) Phys. Rev. D, 76, p. 094007
  • Attems, M., Rebhan, A., Strickland, M., Longitudinal thermalization via the chromo-Weibel instability Proc. Sci., 2012 (CONFINEMENTX), p. 176. , arXiv:1301.7749
  • York, M.C.A., Kurkela, A., Lu, E., Moore, G.D., UV cascade in classical Yang-Mills via kinetic theory (2014) Phys. Rev. D, 89, p. 074036
  • Calzetta, E., Peralta-Ramos, J., Hydrodynamic approach to QGP instabilities (2013) Phys. Rev. D, 88, p. 095010
  • Olson, T., Hiscock, W., Plane steady shock waves in Israel-Stewart fluids (1990) Ann. Phys. (N.Y.), 204, p. 331
  • Jou, D., Pavón, D., Nonlocal and nonlinear effects in shock waves, Diego (1991) Phys. Rev. A, 44, p. 6496
  • Denicol, G.S., Kodama, T., Koide, T., Mota, Ph., Shock propagation and stability in causal dissipative hydrodynamics (2008) Phys. Rev. C, 78, p. 034901
  • Bouras, I., Molnár, E., Niemi, H., Xu, Z., El, A., Fochler, O., Lauciello, F., Rischke, D.H., Relativistic shock waves in viscous gluon matter (2010) J. Phys. Conf. Ser., 230, p. 012045
  • Bouras, I., Molnár, E., Niemi, H., Xu, Z., El, A., Fochler, O., Greiner, C., Rischke, D.H., Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory (2010) Phys. Rev. C, 82, p. 024910
  • Khlebnikov, S., Kruczenski, M., Michalogiorgakis, G., Shock waves in strongly coupled plasmas (2010) Phys. Rev. D, 82, p. 125003
  • Khlebnikov, S., Kruczenski, M., Michalogiorgakis, G., Shock waves in strongly coupled plasmas II J. High Energy Phys., 2011 (7), p. 97
  • Bouras, I., Betz, B., Xu, Z., Greiner, C., Mach cones in viscous heavy-ion collisions (2014) Phys. Rev. C, 90, p. 024904
  • Floerchinger, S., Wiedemann, U.A., Fluctuations around Bjorken flow and the onset of turbulent phenomena J. High Energy Phys., 2011 (11), p. 100
  • Fukushima, K., Turbulent pattern formation and diffusion in the early-time dynamics in the relativistic heavy-ion collision (2014) Phys. Rev. C, 89, p. 024907
  • Khachatryan, V., Modified Kolmogorov Wave Turbulence in QCD matched onto Bottom-up Thermalization (2008) Nucl. Phys., A810, p. 109
  • Carrington, M.E., Rheban, A., Perturbative and nonperturbative Kolmogorov turbulence in a gluon plasma (2011) Eur. Phys. J. C, 71, p. 1787
  • Martinez, M., Strickland, M., Pre-equilibrium dilepton production from an anisotropic quark-gluon plasma (2008) Phys. Rev. C, 78, p. 034917
  • Martinez, M., Strickland, M., Matching pre-equilibrium dynamics and viscous hydrodynamics (2010) Phys. Rev. C, 81, p. 024906
  • Florkowski, W., Ryblewski, R., Strickland, M., Testing viscous and anisotropic hydrodynamics in an exactly solvable case (2013) Phys. Rev. C, 88, p. 024903
  • Martinez, M., Strickland, M., Dissipative dynamics of highly anisotropic systems (2010) Nucl. Phys., A848, p. 183
  • Martinez, M., Strickland, M., Non-boost-invariant anisotropic dynamics (2011) Nucl. Phys., A856, p. 68
  • Strickland, M., Highly anisotropic dissipative hydrodynamics (2013) AIP Conf. Proc., 1560, p. 658
  • Florkowski, W., Martinez, M., Ryblewski, R., Strickland, M., Anisotropic hydrodynamics basic concepts (2012) Proc. Sci., (CONFINEMENTX), p. 221. , arXiv:1301.7539
  • Florkowski, W., Ryblewski, R., Strickland, M., Anisotropic hydrodynamics for rapidly expanding systems (2013) Nucl. Phys., A916, p. 249
  • Strickland, M., Anisotropic hydrodynamics: Motivation and methodology (2014) Nucl. Phys., A926, p. 92
  • Nopoush, M., Ryblewski, R., Strickland, M., Bulk viscous evolution within anisotropic hydrodynamics (2014) Phys. Rev. C, 90, p. 014908
  • Denicol, G., Florkowski, W., Ryblewski, R., Strickland, M., Shear-bulk coupling in nonconformal hydrodynamics (2014) Phys. Rev. C, 90, p. 044905
  • Strickland, M., Anisotropic hydrodynamics: Three lectures (2014) Acta Phys. Pol. B, 45, p. 2355
  • Hatta, Y., Noronha, J., Xiao, B.-W., Exact analytical solutions of second order conformal hydrodynamics (2014) Phys. Rev. D, 89, p. 051702R
  • Hatta, Y., Noronha, J., Xiao, B.-W., Systematic study of exact solutions in second-order conformal hydrodynamics (2014) Phys. Rev. D, 89, p. 114011
  • Nopoush, M., Ryblewski, R., Strickland, M., Anisotropic hydrodynamics for conformal Gubser flow (2015) Phys. Rev. D, 91, p. 045007
  • Hatta, Y., Martínez, M., Xiao, B.-W., Analytic solutions of the relativistic Boltzmann equation (2015) Phys. Rev. D, 91, p. 085024
  • Rebhan, A., Strickland, M., Attems, M., Instabilities of an anisotropically expanding non-Abelian plasma: (Equation presented) discretized hard-loop simulations (2008) Phys. Rev. D, 78, p. 045023
  • Rebhan, A., Steineder, D., Collective modes and instabilities in anisotropically expanding ultrarelativistic plasmas (2010) Phys. Rev. D, 81, p. 085044
  • Ipp, A., Rebhan, A., Strickland, M., Non-Abelian plasma instabilities: SU(3) versus SU(2) (2011) Phys. Rev. D, 84, p. 056003
  • Attems, M., Rebhan, A., Strickland, M., Instabilities of an anisotropically expanding non-Abelian plasma: (Equation presented) discretized hard-loop simulations (2013) Phys. Rev. D, 87, p. 025010
  • Marrochio, H., Noronha, J., Denicol, G.S., Luzum, M., Jeon, S., Gale, C., Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics (2015) Phys. Rev. C, 91, p. 014903
  • Geroch, R., Lindblom, L., Dissipative relativistic fluid theories of divergence type (1990) Phys. Rev. D, 41, p. 1855
  • Geroch, R., Lindblom, L., Causal theories of dissipative relativistic fluids (1991) Ann. Phys. (N.Y.), 207, p. 394
  • Calzetta, E., Relativistic fluctuating hydrodynamics (1998) Classical Quantum Gravity, 15, p. 653
  • Calzetta, E., Thibeault, M., Relativistic theories of interacting fields and fluids (2001) Phys. Rev. D, 63, p. 103507
  • Peralta-Ramos, J., Calzetta, E., Divergence-type nonlinear conformal hydrodynamics (2009) Phys. Rev. D, 80, p. 126002
  • Peralta-Ramos, J., Calzetta, E., Divergence-type theory of conformal fields (2010) Int. J. Mod. Phys. D, 19, p. 1721
  • Peralta-Ramos, J., Calzetta, E., Divergence-type (Equation presented) dissipative hydrodynamics applied to heavy-ion collisions (2010) Phys. Rev. C, 82, p. 054905
  • Lax, P., (1973) Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, , (SIAM, Philadelphia)
  • Nagy, G.B., Reula, O.A., A causal statistical family of dissipative divergence-type fluids (1997) J. Phys. A, 30, p. 1695
  • Denicol, G.S., Koide, T., Rischke, D.H., Dissipative Relativistic Fluid Dynamics: A New Way to Derive the Equations of Motion from Kinetic Theory (2010) Phys. Rev. Lett., 105, p. 162501
  • Denicol, G.S., Molnár, E., Niemi, H., Rischke, D.H., Derivation of fluid dynamics from kinetic theory with the 14 moment approximation (2012) Eur. Phys. J. A, 48, p. 170
  • Calzetta, E., Peralta-Ramos, J., Linking the hydrodynamic and kinetic description of a dissipative relativistic conformal theory (2010) Phys. Rev. D, 82, p. 106003
  • Peralta-Ramos, J., Calzetta, E., Macroscopic approximation to relativistic kinetic theory from a nonlinear closure (2013) Phys. Rev. D, 87, p. 034003
  • Denicol, G.S., Niemi, H., Molnár, E., Rischke, D.H., Derivation of transient relativistic fluid dynamics from the Boltzmann equation (2012) Phys. Rev. D, 85, p. 114047
  • Florkowski, W., Jaiswal, A., Maksymiuk, E., Ryblewski, R., Strickland, M., Relativistic quantum transport coefficients for second-order viscous hydrodynamics (2015) Phys. Rev. C, 91, p. 054907
  • Romatschke, P., Strickland, M., Collective modes of an isotropic quark-gluon plasma (2003) Phys. Rev. D, 68, p. 036004
  • Hiscock, W., Lindblom, L., Stability and causality in dissipative relativistic fluids (1983) Ann. Phys. (N.Y.), 151, p. 466
  • Hiscock, W., Lindblom, L., Generic instabilities in first-order dissipative relativistic fluid theories (1985) Phys. Rev. D, 31, p. 725
  • Hiscock, W., Lindblom, L., Stability in dissipative fluid theories (1988) Contemp. Math., 71, p. 181
  • Olson, T., Stability and causality in the Israel-Stewart energy frame theory (1990) Ann. Phys. (N.Y.), 199, p. 18
  • Anile, A.M., Muscato, O., Improved hydrodynamical model for carrier transport in semiconductors (1995) Phys. Rev. B, 51, p. 16728
  • Anile, A.M., Trovato, M., Nonlinear closures for hydrodynamical semiconductor transport models (1997) Phys. Lett. A, 230, p. 387
  • Trovato, M., Falsaperla, P., Full nonlinear closure for a hydrodynamic model of transport in silicon (1998) Phys. Rev. B, 57, p. 4456
  • Gorban, A.N., Karlin, I.V., (2004) Invariant Manifolds for Physical and Chemical Kinetics, , (Springer, Berlin)
  • Müller, I., Ruggeri, T., (1993) Extended Thermodynamics, , (Springer-Verlag, New York)
  • Peralta-Ramos, J., Calzetta, E., Effective dynamics of a nonabelian plasma out of equilibrium (2012) Phys. Rev. D, 86, p. 125024
  • Calzetta, E., Non abelian hydrodynamics and heavy ion collisions (2014) AIP Conf. Proc., 1578, p. 74
  • Denicol, G.S., Heinz, U., Martnez, M., Noronha, J., Strickland, M., A new exact solution of the relativistic Boltzmann equation and its hydrodynamic limit (2014) Phys. Rev. Lett., 113, p. 202301
  • Denicol, G.S., Heinz, U., Martnez, M., Noronha, J., Strickland, M., Studying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equation (2014) Phys. Rev. D, 90, p. 125026
  • Noronha, J., Denicol, G.S., Perfect Fluidity of A Dissipative System: Analytical Solution for the Boltzmann Equation in AdS2xS2, , arXiv:1502.05892

Citas:

---------- APA ----------
(2015) . Hydrodynamic approach to boost invariant free streaming. Physical Review D - Particles, Fields, Gravitation and Cosmology, 92(4).
http://dx.doi.org/10.1103/PhysRevD.92.045035
---------- CHICAGO ----------
Calzetta, E. "Hydrodynamic approach to boost invariant free streaming" . Physical Review D - Particles, Fields, Gravitation and Cosmology 92, no. 4 (2015).
http://dx.doi.org/10.1103/PhysRevD.92.045035
---------- MLA ----------
Calzetta, E. "Hydrodynamic approach to boost invariant free streaming" . Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 92, no. 4, 2015.
http://dx.doi.org/10.1103/PhysRevD.92.045035
---------- VANCOUVER ----------
Calzetta, E. Hydrodynamic approach to boost invariant free streaming. Phys Rev D Part Fields Gravit Cosmol. 2015;92(4).
http://dx.doi.org/10.1103/PhysRevD.92.045035