Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the possibility that primordial magnetic fields generated in the transition between inflation and reheating posses magnetic helicity, HM. The fields are induced by stochastic currents of scalar charged particles created during the mentioned transition. We estimate the rms value of the induced magnetic helicity by computing different four-point scalar quantum electrodynamics Feynman diagrams. For any considered volume, the magnetic flux across its boundaries is in principle not null, which means that the magnetic helicity in those regions is gauge dependent. We use the prescription given by Berger and Field and interpret our result as the difference between two magnetic configurations that coincide in the exterior volume. In this case, the magnetic helicity gives only the number of magnetic links inside the considered volume. We calculate a concrete value of HM for large scales and analyze the distribution of magnetic defects as a function of the scale. Those defects correspond to regular as well as random fields in the considered volume. We find that the fractal dimension of the distribution of topological defects is D=1/2. We also study if the regular fields induced on large scales are helical, finding that they are and that the associated number of magnetic defects is independent of the scale. In this case, the fractal dimension is D=0. We finally estimate the intensity of fields induced at the horizon scale of reheating and evolve them until the decoupling of matter and radiation under the hypothesis of the inverse cascade of magnetic helicity. The resulting intensity is high enough and the coherence length long enough to have an impact on the subsequent process of structure formation. © 2014 American Physical Society.

Registro:

Documento: Artículo
Título:Primordial magnetic helicity from stochastic electric currents
Autor:Calzetta, E.; Kandus, A.
Filiación:Departamento de Física, IFIBA, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
LATO, DCET, UESC, Rodovia Ilhéus-Itabuna km 16 s/n, CEP 45662-900, Ilhéus-Bahia, Brazil
Año:2014
Volumen:89
Número:8
DOI: http://dx.doi.org/10.1103/PhysRevD.89.083012
Título revista:Physical Review D - Particles, Fields, Gravitation and Cosmology
Título revista abreviado:Phys Rev D Part Fields Gravit Cosmol
ISSN:15507998
CODEN:PRVDA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v89_n8_p_Calzetta

Referencias:

  • Carilli, C.L., Taylor, G.B., (2002) Annu. Rev. Astron. Astrophys., 40, p. 319. , ARAAAJ 0066-4146 10.1146/annurev.astro.40.060401.093852
  • Bagchi, J., Jacob, J., Krishna-Gopal, Werner, N., Wadnerkar, N., Belapure, J., Kumbharkhane, A.C., (2009) Mon. Not. R. Astron. Soc., 399, p. 601. , MNRAA4 0035-8711 10.1111/j.1365-2966.2009.15310.x
  • Bernet, M.L., Miniati, F., Lilly, S.J., Kronberg, P.P., Dessauges-Zavadsky, M., (2008) Nature (London), 454, p. 302. , NATUAS 0028-0836 10.1038/nature07105
  • Wolfe, A., Jorgenson, R.A., Robishaw, T., Heiles, C., Prochaska, J.X., (2008) Nature (London), 455, p. 638. , NATUAS 0028-0836 10.1038/nature07264
  • Kronberg, P.P., Bernet, M.L., Miniati, F., Lilly, S.J., Short, M.B., Higdon, D.M., (2008) Astrophys. J., 676, p. 70. , ASJOAB 0004-637X 10.1086/527281
  • Moffatt, H.K., (1978) Magnetic Field Generation in Electrically Conducting Fluids, , (Cambridge University Press, Cambridge, England)
  • Zel'Dovich, Y.B., Ruzmaikin, A.A., Sokolov, D.D., (1983) Magnetic Fields in Astrophysics, , (Gordon and Breach, New York)
  • Brandenburg, A., Dobler, W., Subramanian, K., (2002) Astron. Nachr., 323, p. 99. , ASNAAN 0004-6337 10.1002/1521-3994(200207)323:2<99::AID-ASNA99>3.0. CO;2-B
  • Brandenburg, A., Subramanian, K., (2005) Phys. Rep., 417, p. 1. , PRPLCM 0370-1573 10.1016/j.physrep.2005.06.005
  • Tavecchio, F., Ghisellini, G., Foschini, L., Bonnoli, G., Ghirlanda, G., Coppi, P., (2010) Mon. Not. R. Astron. Soc., 406, pp. L70. , MNRAA4 0035-8711
  • Ando, S., Kusenko, A., (2010) Astrophys. J. Lett., 722, pp. L39. , AJLEEY 2041-8205 10.1088/2041-8205/722/1/L39
  • Neronov, A., Vovk, I., (2010) Science, 328, p. 73. , SCIEAS 0036-8075 10.1126/science.1184192
  • www.skatelescope.org; www.lofar.org; www.haystack.mit.edu/ast/arrays/Edges; Harrison, E.R., (1970) Mon. Not. R. Astron. Soc., 147, p. 279. , MNRAA4 0035-8711
  • Grasso, D., Rubinstein, H.R., (2001) Phys. Rep., 348, p. 163. , PRPLCM 0370-1573 10.1016/S0370-1573(00)00110-1
  • Widrow, L.M., (2002) Rev. Mod. Phys., 74, p. 775. , RMPHAT 0034-6861 10.1103/RevModPhys.74.775
  • Giovannini, M., (2004) Int. J. Mod. Phys. D, 13, p. 391. , IMPDEO 0218-2718 10.1142/S0218271804004530
  • Kandus, A., Kunze, K., Tsagas, C.G., (2011) Phys. Rep., 505, p. 1. , PRPLCM 0370-1573 10.1016/j.physrep.2011.03.001
  • Widrow, L.M., Ryu, D., Schleicher, D.R.G., Subramanian, K., Tsagas, C.G., Treumann, R.A., (2012) Space Sci. Rev., 166, p. 37. , SPSRA4 0038-6308 10.1007/s11214-011-9833-5
  • Son, D.T., (1999) Phys. Rev. D, 59, p. 063008. , PRVDAQ 0556-2821 10.1103/PhysRevD.59.063008
  • Graña, M., Calzetta, E.A., (2002) Phys. Rev. D, 65, p. 063522. , PRVDAQ 0556-2821 10.1103/PhysRevD.65.063522
  • Calzetta, E., Kandus, A., J. Cosmol. Astropart. Phys., 2010 (8), p. 007. , JCAPBP 1475-7516 10.1088/1475-7516/2010/08/007
  • Giovannini, M., (2012) Phys. Lett. B, 711, p. 327. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.04.007
  • Frish, U., Pouquet, A., Leíorat, J., Mazure, A., (1975) J. Fluid Mech., 68, p. 769. , JFLSA7 0022-1120 10.1017/S002211207500122X
  • Pouquet, A., Frish, U., Leorat, J., (1976) J. Fluid Mech., 77, p. 321. , JFLSA7 0022-1120 10.1017/S0022112076002140
  • Malapaka, S.K., Müller, W.C., (2013) Astrophys. J., 778, p. 21. , ASJOAB 0004-637X 10.1088/0004-637X/778/1/21
  • Berger, M.A., Field, G.B., (1984) J. Fluid Mech., 147, p. 133. , JFLSA7 0022-1120 10.1017/S0022112084002019
  • Biskamp, D., (2003) Magnetohydrodynamic Turbulence, , (Cambridge University Press, Cambridge, England)
  • Blackman, E.G., Field, G.B., (2002) Phys. Rev. Lett., 89, p. 265007. , PRLTAO 0031-9007 10.1103/PhysRevLett.89.265007
  • Cornwall, J.M., (1997) Phys. Rev. D, 56, p. 6146. , PRVDAQ 0556-2821 10.1103/PhysRevD.56.6146
  • Vachaspati, T., (2001) Phys. Rev. Lett., 87, p. 251302. , PRLTAO 0031-9007 10.1103/PhysRevLett.87.251302
  • Copi, C.J., Ferrer, F., Vachaspati, T., Achucarro, A., (2008) Phys. Rev. Lett., 101, p. 171302. , PRLTAO 0031-9007 10.1103/PhysRevLett.101.171302
  • Chu, Y.-Z., Dent, J.B., Vachaspati, T., (2011) Phys. Rev. D, 83, p. 123530. , PRVDAQ 1550-7998 10.1103/PhysRevD.83.123530
  • Long, A., Sabancilar, E., Vachaspati, T., J. Cosmol. Astropart. Phys., 2014 (2), p. 036. , JCAPBP 1475-7516 10.1088/1475-7516/2014/02/036
  • Campanelli, L., (2014) Eur. Phys. J. C, 74, p. 2690. , EPCFFB 1434-6044 10.1140/epjc/s10052-013-2690-5
  • Campanelli, L., (2009) Int. J. Mod. Phys. D, 18, p. 1395. , IMPDEO 0218-2718 10.1142/S0218271809015175
  • Campanelli, L., (2007) Phys. Rev. Lett., 98, p. 251302. , PRLTAO 0031-9007 10.1103/PhysRevLett.98.251302
  • Saveliev, A., Jedamzik, K., Sigl, G., (2013) Phys. Rev. D, 87, p. 123001. , PRVDAQ 1550-7998 10.1103/PhysRevD.87.123001
  • Calzetta, E.A., Kandus, A., Mazzitelli, F.D., (1998) Phys. Rev. D, 57, p. 7139. , PRVDAQ 0556-2821 10.1103/PhysRevD.57.7139
  • Kandus, A., Calzetta, E., Mazzitelli, F.D., Wagner, C.E.M., (2000) Phys. Lett. B, 472, p. 287. , PYLBAJ 0370-2693 10.1016/S0370-2693(99)01389-1
  • Giovannini, M., Shaposhnikov, M., (2000) Phys. Rev. D, 62, p. 103512. , PRVDAQ 0556-2821 10.1103/PhysRevD.62.103512
  • Calzetta, E., Hu, B.L., (2008) Nonequilibrium Quantum Field Theory, , (Cambridge University Press, Cambridge, England)
  • Ryu, D., Schleicher, D.R.G., Treumann, R.A., Tsagas, C.G., Widrow, L.M., (2012) Space Sci. Rev., 166, p. 1. , SPSRA4 0038-6308 10.1007/s11214-011-9839-z
  • Birrel, N.D., Davies, P.C.W., (1994) Quantum Fields in Curved Space, , (Cambridge University Press, Cambridge, England)
  • Calzetta, E., Sakellariadou, M., (1992) Phys. Rev. D, 45, p. 2802. , PRVDAQ 0556-2821 10.1103/PhysRevD.45.2802
  • Calzetta, E., Sakellariadou, M., (1993) Phys. Rev. D, 47, p. 3184. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.3184
  • Kahniashvili, T., Tevzadze, A.G., Brandenburg, A., Neronov, A., (2013) Phys. Rev. D, 87, p. 083007. , PRVDAQ 1550-7998 10.1103/PhysRevD.87.083007
  • Kolb, E., Turner, M.S., (1990) The Early Universe, , (Addison-Wesley, Reading, MA)

Citas:

---------- APA ----------
Calzetta, E. & Kandus, A. (2014) . Primordial magnetic helicity from stochastic electric currents. Physical Review D - Particles, Fields, Gravitation and Cosmology, 89(8).
http://dx.doi.org/10.1103/PhysRevD.89.083012
---------- CHICAGO ----------
Calzetta, E., Kandus, A. "Primordial magnetic helicity from stochastic electric currents" . Physical Review D - Particles, Fields, Gravitation and Cosmology 89, no. 8 (2014).
http://dx.doi.org/10.1103/PhysRevD.89.083012
---------- MLA ----------
Calzetta, E., Kandus, A. "Primordial magnetic helicity from stochastic electric currents" . Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 89, no. 8, 2014.
http://dx.doi.org/10.1103/PhysRevD.89.083012
---------- VANCOUVER ----------
Calzetta, E., Kandus, A. Primordial magnetic helicity from stochastic electric currents. Phys Rev D Part Fields Gravit Cosmol. 2014;89(8).
http://dx.doi.org/10.1103/PhysRevD.89.083012