Artículo

Grumiller, D.; Leston, M.; Vassilevich, D. "Anti-de Sitter holography for gravity and higher spin theories in two dimensions" (2014) Physical Review D - Particles, Fields, Gravitation and Cosmology. 89(4)
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We provide a holographic description of two-dimensional dilaton gravity with anti-de Sitter boundary conditions. We find that the asymptotic symmetry algebra consists of a single copy of the Virasoro algebra with nonvanishing central charge and point out difficulties with the standard canonical treatment. We generalize our results to higher spin theories and thus provide the first examples of two-dimensional higher spin gravity with holographic description. For spin-3 gravity we find that the asymptotic symmetry algebra is a single copy of the W3 algebra. © 2014 American Physical Society.

Registro:

Documento: Artículo
Título:Anti-de Sitter holography for gravity and higher spin theories in two dimensions
Autor:Grumiller, D.; Leston, M.; Vassilevich, D.
Filiación:Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/136, A-1040 Vienna, Austria
Instituto de Astronomia y Fisica Del Espacio (IAFE), Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires, Argentina
CMCC, Universidade Federal Do ABC, Santo André 0910-580, Brazil
Año:2014
Volumen:89
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevD.89.044001
Título revista:Physical Review D - Particles, Fields, Gravitation and Cosmology
Título revista abreviado:Phys Rev D Part Fields Gravit Cosmol
ISSN:15507998
CODEN:PRVDA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v89_n4_p_Grumiller

Referencias:

  • Mandal, G., Sengupta, A.M., Wadia, S.R., (1991) Mod. Phys. Lett. A, 6, p. 1685. , MPLAEQ 0217-7323 10.1142/S0217732391001822
  • Elitzur, S., Forge, A., Rabinovici, E., (1991) Nucl. Phys., 359, p. 581. , NUPBBO 0550-3213 10.1016/0550-3213(91)90073-7
  • Witten, E., (1991) Phys. Rev. D, 44, p. 314. , PRVDAQ 0556-2821 10.1103/PhysRevD.44.314
  • Callan Jr., C.G., Giddings, S.B., Harvey, J.A., Strominger, A., (1992) Phys. Rev. D, 45. , R1005. PRVDAQ 0556-2821 10.1103/PhysRevD.45.R1005
  • Susskind, L., Thorlacius, L., Uglum, J., (1993) Phys. Rev. D, 48, p. 3743. , PRVDAQ 0556-2821 10.1103/PhysRevD.48.3743
  • Gegenberg, J., Kunstatter, G., Louis-Martinez, D., (1995) Phys. Rev. D, 51, p. 1781. , PRVDAQ 0556-2821 10.1103/PhysRevD.51.1781
  • Grumiller, D., McNees, R., J. High Energy Phys., 2007 (4). , () 074. JHEPFG 1029-8479 10.1088/1126-6708/2007/04/074
  • Fiola, T.M., Preskill, J., Strominger, A., Trivedi, S.P., (1994) Phys. Rev. D, 50, p. 3987. , PRVDAQ 0556-2821 10.1103/PhysRevD.50.3987
  • Ashtekar, A., Taveras, V., Varadarajan, M., Information is not lost in the evaporation of 2D black holes (2008) Physical Review Letters, 100 (21), p. 211302. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.211302&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.211302
  • Fischer, P., Grumiller, D., Kummer, W., Vassilevich, D.V., S-matrix for s-wave gravitational scattering (2001) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 521 (3-4), pp. 357-363. , DOI 10.1016/S0370-2693(01)01227-8, PII S0370269301012278
  • Grumiller, D., (2010) Phys. Rev. Lett., 105, p. 211303. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.211303
  • Carlip, S., Grumiller, D., (2011) Phys. Rev. D, 84, p. 084029. , PRVDAQ 1550-7998 10.1103/PhysRevD.84.084029
  • Grumiller, D., Kummer, W., Vassilevich, D.V., (2002) Phys. Rep., 369, p. 327. , PRPLCM 0370-1573 10.1016/S0370-1573(02)00267-3
  • 'T Hooft, G., (1993) Salamfestschrift, , in (World Scientific, Singapore)
  • Susskind, L., (1995) J. Math. Phys. (N.Y.), 36, p. 6377. , JMAPAQ 0022-2488 10.1063/1.531249
  • Maldacena, J.M., (1998) Adv. Theor. Math. Phys., 2, p. 231. , 1095-0761
  • Strominger, A., J. High Energy Phys., 1999 (1). , () 007. JHEPFG 1029-8479 10.1088/1126-6708/1999/01/007
  • Cadoni, M., Mignemi, S., (1999) Nucl. Phys., 557, p. 165. , NUPBBO 0550-3213 10.1016/S0550-3213(99)00398-3
  • Navarro-Salas, J., Navarro, P., (2000) Nucl. Phys., 579, p. 250. , NUPBBO 0550-3213 10.1016/S0550-3213(00)00165-6
  • Hartman, T., Strominger, A., J. High Energy Phys., 2009 (4). , () 026. JHEPFG 1029-8479 10.1088/1126-6708/2009/04/026
  • Henneaux, M., Rey, S.-J., J. High Energy Phys., 2010 (12). , () 007. JHEPFG 1029-8479 10.1007/JHEP12(2010)007
  • Campoleoni, A., Fredenhagen, S., Pfenninger, S., Theisen, S., J. High Energy Phys., 2010 (11). , () 007. JHEPFG 1029-8479 10.1007/JHEP11(2010)007
  • Gaberdiel, M.R., Gopakumar, R., (2011) Phys. Rev. D, 83, p. 066007. , PRVDAQ 1550-7998 10.1103/PhysRevD.83.066007
  • Afshar, H., Bagchi, A., Fareghbal, R., Grumiller, D., Rosseel, J., (2013) Phys. Rev. Lett., 111, p. 121603. , PRLTAO 0031-9007 10.1103/PhysRevLett.111.121603
  • Gonzalez, H.A., Matulich, J., Pino, M., Troncoso, R., J. High Energy Phys., 2013 (9). , () 016. JHEPFG 1029-8479 10.1007/JHEP09(2013)016
  • Banks, T., O'Loughlin, M., (1991) Nucl. Phys., 362, p. 649. , NUPBBO 0550-3213 10.1016/0550-3213(91)90547-B
  • Russo, J.G., Tseytlin, A.A., (1992) Nucl. Phys., 382, p. 259. , NUPBBO 0550-3213 10.1016/0550-3213(92)90187-G
  • Odintsov, S.D., Shapiro, I.L., (1991) Phys. Lett. B, 263, p. 183. , PYLBAJ 0370-2693 10.1016/0370-2693(91)90583-C
  • Kummer, W., Liebl, H., Vassilevich, D.V., (1997) Nucl. Phys., 493, p. 491. , NUPBBO 0550-3213 10.1016/S0550-3213(97)00143-0
  • Brown, J.D., Henneaux, M., (1986) Commun. Math. Phys., 104, p. 207. , CMPHAY 0010-3616 10.1007/BF01211590
  • Bagchi, A., Detournay, S., Grumiller, D., (2012) Phys. Rev. Lett., 109, p. 151301. , PRLTAO 0031-9007 10.1103/PhysRevLett.109.151301
  • Achucarro, A., Townsend, P.K., (1986) Phys. Lett. B, 180, p. 89. , PYLBAJ 0370-2693 10.1016/0370-2693(86)90140-1
  • Witten, E., (1988) Nucl. Phys., 311, p. 46. , NUPBBO 0550-3213 10.1016/0550-3213(88)90143-5
  • Ikeda, N., (1994) Ann. Phys. (N.Y.), 235, p. 435. , APNYA6 0003-4916 10.1006/aphy.1994.1104
  • Schaller, P., Strobl, T., (1994) Mod. Phys. Lett. A, 9, p. 3129. , MPLAEQ 0217-7323 10.1142/S0217732394002951
  • Strobl, T., Algebroid Yang-Mills theories (2004) Physical Review Letters, 93 (21), pp. 2116011-2116014. , DOI 10.1103/PhysRevLett.93.211601, 211601
  • Castro, A., Song, W., (to be published); K. Alkalaev, arXiv:1311.5119; Jackiw, R., Christensen, S., (1984) Quantum Theory of Gravity, pp. 403-420. , in, edited by (Hilger, Bristol)
  • Teitelboim, C., Christensen, S., (1984) Quantum Theory of Gravity, pp. 327-344. , in, edited by (Hilger, Bristol)
  • Isler, K., Trugenberger, C.A., (1989) Phys. Rev. Lett., 63, p. 834. , PRLTAO 0031-9007 10.1103/PhysRevLett.63.834
  • Chamseddine, A.H., Wyler, D., (1989) Phys. Lett. B, 228, p. 75. , PYLBAJ 0370-2693 10.1016/0370-2693(89)90528-5
  • Cangemi, D., Jackiw, R., (1992) Phys. Rev. Lett., 69, p. 233. , PRLTAO 0031-9007 10.1103/PhysRevLett.69.233
  • Achucarro, A., (1993) Phys. Rev. Lett., 70, p. 1037. , PRLTAO 0031-9007 10.1103/PhysRevLett.70.1037
  • Vassilevich, D., (2013) Phys. Rev. D, 87, p. 104011. , PRVDAQ 1550-7998 10.1103/PhysRevD.87.104011
  • Bergamin, L., Grumiller, D., Kummer, W., Vassilevich, D.V., Physics-to-gauge conversion at black hole horizons (2006) Classical and Quantum Gravity, 23 (9), pp. 3075-3101. , DOI 10.1088/0264-9381/23/9/019, PII S0264938106151242
  • Di Francesco, P., Mathieu, P., Senechal, D., (1997) Conformal Field Theory, , (Springer, New York)
  • Cadoni, M., Mignemi, S., (2000) Phys. Lett. B, 490, p. 131. , PYLBAJ 0370-2693 10.1016/S0370-2693(00)00982-5
  • A direct computation by Cadoni and Mignemi led to a discrepancy of 2 between CFT and gravitational entropies [63]. Their computation is based upon the assumption that there is a well-defined canonical realization of the asymptotic symmetries, which was contested already in [64]. An alternative calculation in [65] yielded c = 6 / G, where G = 1 / (8 κ) in our conventions. Their result differs from ours by a factor of 2 π, which could be due to the fact that we do not have any φ integration in our analysis; In Eq. (32) we consider the canonical boundary charges associated with a single AdS 2 boundary component. Adding the contributions from both boundary components yields zero; In Ref. [66] the authors related the Jackiw-Teitelboim model to de Alfaro-Fubini-Furlan conformal quantum mechanics [67] and also found features resembling nonintegrability. Namely, they find an anholonomic constraint, Eq. (10) in their paper, which leads to a nonexact 1-form. The nonexact expression, translated to our conventions, is T d X R, which essentially matches the nonintegrable term in our (32); Barnich, G., Troessaert, C., J. High Energy Phys., 2011 (12). , () 105. JHEPFG 1029-8479 10.1007/JHEP12(2011)105
  • Barnich, G., Troessaert, C., J. High Energy Phys., 2013 (11). , () 003. JHEPFG 1029-8479 10.1007/JHEP11(2013)003
  • A. Strominger, arXiv:1308.0589; Barnich, G., Lambert, P.-H., (2013) Phys. Rev. D, 88, p. 103006. , PRVDAQ 1550-7998 10.1103/PhysRevD.88.103006
  • Wald, R.M., Zoupas, A., (2000) Phys. Rev. D, 61, p. 084027. , PRVDAQ 0556-2821 10.1103/PhysRevD.61.084027
  • Interestingly, also in four dimensions higher spin theory actions can be formulated through higher-dimensional analogs of PSMs [68,69]. This is also the appropriate place to mention that PSMs are rigid, in the sense that any Barnich-Henneaux-type of consistent deformation [70] of a PSM yields again a PSM with the same field content [71; Ammon, M., Gutperle, M., Kraus, P., Perlmutter, E., (2013) J. Phys. A, 46, p. 214001. , JPAMB5 1751-8113 10.1088/1751-8113/46/21/214001
  • Chamon, C., Jackiw, R., Pi, S.-Y., Santos, L., (2011) Phys. Lett. B, 701, p. 503. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.06.023
  • Sen, A., (2009) Int. J. Mod. Phys. A, 24, p. 4225. , IMPAEF 0217-751X 10.1142/S0217751X09045893
  • Vasiliev, M.A., (1990) Phys. Lett. B, 243, p. 378. , PYLBAJ 0370-2693 10.1016/0370-2693(90)91400-6
  • We were informed by Rey that he formulated higher spin AdS 2 gravity based on hs (λ) with particular emphasis on relation to higher spin AdS 3 gravity, as reported in his talk in 2011 [72]. He also proposed a specific CFT 1 dual based on a variant of large- N Calogero model [72,73; Cadoni, M., Mignemi, S., (1999) Phys. Rev. D, 59, p. 081501. , PRVDAQ 0556-2821 10.1103/PhysRevD.59.081501
  • Park, M.-I., Yee, J.H., (2000) Phys. Rev. D, 61, p. 088501. , PRVDAQ 0556-2821 10.1103/PhysRevD.61.088501
  • Cadoni, M., Carta, P., Mignemi, S., (2002) Nucl. Phys., 632, p. 383. , NUPBBO 0550-3213 10.1016/S0550-3213(02)00259-6
  • Cadoni, M., Carta, P., Klemm, D., Mignemi, S., 2D anti-de Sitter gravity as a conformally invariant mechanical system (2001) Physical Review D, 63 (12), p. 125021. , DOI 10.1103/PhysRevD.63.125021
  • De Alfaro, V., Fubini, S., Furlan, G., (1976) Nuovo Cimento Soc. Ital. Fis. A, 34, p. 569. , NIFAAM 1124-1861 10.1007/BF02785666
  • Boulanger, N., Sundell, P., (2011) J. Phys. A, 44, p. 495402. , JPAMB5 1751-8113 10.1088/1751-8113/44/49/495402
  • Boulanger, N., Colombo, N., Sundell, P., J. High Energy Phys., 2012 (10). , () 043. JHEPFG 1029-8479 10.1007/JHEP10(2012)043
  • Barnich, G., Henneaux, M., (1993) Phys. Lett. B, 311, p. 123. , PYLBAJ 0370-2693 10.1016/0370-2693(93)90544-R
  • Izawa, K.I., (2000) Prog. Theor. Phys., 103, p. 225. , PTPKAV 0033-068X 10.1143/PTP.103.225
  • Rey, S.-J., Proceedings of the Simons Workshop on Higher Spin Gravity and Holography, March 2011, , http://media.scgp.stonybrook.edu/video/video.php?f=20110316_3_qtp.mp4
  • Rey, S.-J., (personal communication); (to be published)

Citas:

---------- APA ----------
Grumiller, D., Leston, M. & Vassilevich, D. (2014) . Anti-de Sitter holography for gravity and higher spin theories in two dimensions. Physical Review D - Particles, Fields, Gravitation and Cosmology, 89(4).
http://dx.doi.org/10.1103/PhysRevD.89.044001
---------- CHICAGO ----------
Grumiller, D., Leston, M., Vassilevich, D. "Anti-de Sitter holography for gravity and higher spin theories in two dimensions" . Physical Review D - Particles, Fields, Gravitation and Cosmology 89, no. 4 (2014).
http://dx.doi.org/10.1103/PhysRevD.89.044001
---------- MLA ----------
Grumiller, D., Leston, M., Vassilevich, D. "Anti-de Sitter holography for gravity and higher spin theories in two dimensions" . Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 89, no. 4, 2014.
http://dx.doi.org/10.1103/PhysRevD.89.044001
---------- VANCOUVER ----------
Grumiller, D., Leston, M., Vassilevich, D. Anti-de Sitter holography for gravity and higher spin theories in two dimensions. Phys Rev D Part Fields Gravit Cosmol. 2014;89(4).
http://dx.doi.org/10.1103/PhysRevD.89.044001