Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanotechnology is an extremely powerful emerging technology, which is expected to have a substantial impact on biomedical technology, especially in tissue engineering and drug delivery. The use of nanocompounds and nanoparticles in the synthesis of improved bone cements to be applied in vertebroplasty/kyphoplasty and arthroplasty, is of great interest due to the increasing incidence of osteoporosis and osteoarthritis. This review reports new advances in the development of acrylic bone cements, using different radio-opalescent nanomaterials taking into consideration their influence on the mechanical behavior and biocompatibility Delivered of theby resulting Ingenta acrylic to: Elsevier bone cement. BV Furthermore, other non-radiopaque nanoparticles capable of mechanically IP: 203.56.241.128 reinforcing the bone On: Sat, cement 17 as Sep well 2016 as induce 23:44:28 osteointegration, are also reviewed. Additionally, nanoparticles used to improve the controlled contained in acrylic bone cements are briefly described. Copyright © 2014 American Scientific Publishers.

Registro:

Documento: Artículo
Título:Acrylic bone cements: The role of nanotechnology in improving osteointegration and tunable mechanical properties
Autor:Lissarrague, M.H.; Fascio, M.L.; Goyanes, S.; D'Accorso, N.B.
Filiación:LP AndMC, Departamento de Física, FCEyN-UBA, IFIBA-CONICET, Ciudad Universitaria C1428 EHA, Ciudad Autónoma de Buenos Aires, Argentina
CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN-UBA, Ciudad Universitaria C1428 EHA, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:: Acrylic bone cement; Biocompatibily; Bone tissue engineering; Kyphoplasty; Mechanical behavior; Osteointegration; Vertebroplasty; Biocompatibility; Biomechanics; Bone; Nanoparticles; Nanotechnology; Synthesis (chemical); Tissue; Tissue engineering; Acrylic bone cements; Biocompatibily; Bone tissue engineering; Kyphoplasty; Mechanical behavior; Osteointegration; Vertebroplasty; Bone cement; nanoparticle; poly(methyl methacrylate); animal; bone regeneration; cementoplasty; chemistry; compressive strength; drug design; drug effects; hardness; human; nanomedicine; physiology; procedures; tensile strength; Young modulus; Animals; Cementoplasty; Compressive Strength; Drug Design; Elastic Modulus; Hardness; Humans; Nanomedicine; Nanoparticles; Osseointegration; Polymethyl Methacrylate; Tensile Strength
Año:2014
Volumen:10
Número:12
Página de inicio:3536
Página de fin:3557
DOI: http://dx.doi.org/10.1166/jbn.2014.2045
Título revista:Journal of Biomedical Nanotechnology
Título revista abreviado:J. Biomed. Nanotechnol.
ISSN:15507033
CAS:poly(methyl methacrylate), 39320-98-4, 9008-29-1; Polymethyl Methacrylate
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507033_v10_n12_p3536_Lissarrague

Referencias:

  • Barr, J.D., Barr, M.S., Lemley, T.J., McCann, R.M., Percutaneous vertebroplasty for pain relief and spinal stabilization (2000) Spine, 25, p. 923
  • Marcucci, G., Brandi, M.L., Kyphoplasty and vertebroplasty in the management of osteoporosis with subsequent vertebral compression fractures (2010) Clin. Cases Miner. Bone Metab., 7, p. 51
  • Webb, J.C.J., Spencer, R.F., The role of polymethylmethacrylate bone cement in modern orthopaedic surgery (2007) J. Bone Joint Surg. Br., 89, p. 851
  • Lovald, S.T., Ong, K.L., Lau, E.C., Schmier, J.K., Bozic, K.J., Kurtz, S.M., Mortality, cost, and downstream disease of total hip arthroplasty patients in the medicare population (2014) J. Arthroplasty, 29, p. 242
  • Bansal, A., Khatib, O.N., Zuckerman, J.D., Revision total joint arthroplasty: The epidemiology of 63,140 cases in New York state (2014) J. Arthroplasty, 29, p. 23
  • Bednar, T., Heyde, C.E., Bednar, G., Nguyen, D., Volpi, E., Przkora, R., Kyphoplasty for vertebral augmentation in the elderly with osteoporotic vertebral compression fractures: Scenarios and review of recent studies (2013) Clin. Ther., 35, p. 1721
  • Endogan, T., Kiziltay, A., Kose, G.T., Comunoglu, N., Beyzadeoglu, T., Hasirci, N., Acrylic bone cements: Effects of the poly(methyl methacrylate) powder size and chitosan addition on their properties (2013) J. Appl. Pol. Sci., 131, p. 1
  • Provenzano, M.J., Murphy, K.P.J., Riley, L.H., Bone cements: Review of their physiochemical and biochemical properties in percutaneous vertebroplasty. Am (2004) J. Neuroradiol., 25, p. 1286
  • Tancioni, F., Lorenzetti, M.A., Navarria, P., Pessina, F., Draghi, R., Pedrazzoli, P., Scorsetti, M., Rodriguez y Baena, R., Percutaneous vertebral augmentation in metastatic disease: State of the art (2011) J. Support. Oncol., 9, p. 4
  • McGraw, J.K., Lippert, J.A., Minkus, M.D., Rami, P.M., Davis, M.T., Budzik, R.F., Prospective evaluation of pain relief in 100 patients undergoing percutaneous vertebroplasty: Results and follow-up (2002) J. Vasc. Interv. Radiol., 13, p. 883
  • Baroud, G., Bohner, M., Biomechanical impact of vertebroplasty. Postoperative biomechanics of vertebroplasty Jt. Bone Spine
  • Luo, J., Adams, M.A., Dolan, P., Vertebroplasty and kyphoplasty can restore normal spine mechanics following osteoporotic vertebral fracture (2010) J. Osteoporos, , ID 729257 (2010)
  • Benneker, L.M., Krebs, J., Boner, V., Boger, A., Hoerstrup, S., Heini, P.F., Gisep, A., Cardiovascular changes after PMMA vertebroplasty in sheep: The effect of bone marrow removal using pulsed jet-lavage (2010) Eur. Spine J., 19, p. 1913
  • Chu, W., Tsuei, Y.C., Liao, P.H., Lin, J.H., Chou, W.H., Chu, W.C., Young, T.S., Young, Decompressed percutaneous vertebroplasty: A secured bone cement delivery procedure for vertebral augmentation in osteoporotic compression fractures (2013) Injury, 44, p. 813
  • Abdelrahman, H., Siam, A.E., Shawky, A., Ezzati, A., Boehm, H., Infection after vertebroplasty or kyphoplasty. A series of nine cases and review of literature (2013) Spine J, 13, p. 1809
  • Yang, H., Liu, T., Zhou, J., Meng, B., Wang, G., Zhu, X., Kyphoplasty versus vertebroplasty for painful osteoporotic vertebral compression fractures-Which one is better? A systematic review and meta-analysis (2013) Int. J. Spine Surg., 7, p. e45
  • Rasouli, M.R., Maltenfort, M.G., Ross, D., Hozack, W.J., Memtsoudis, S.G., Parvizi, J., Perioperative morbidity and mortality following bilateral total hip arthroplasty (2014) J. Arthroplasty, 29, p. 142
  • Lu, J., (2004) Biomechanics and Biomaterials in Orthopedics, pp. 86-100. , D. G. Poitout, Springer Verlag, London
  • Deramond, H., Depriester, C., Galibert, P., Gars, D.L., Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results (1998) Radiol. Clin. North Am, 36, p. 533
  • Eveleigh, R., Perioper, B.J., Temperature and its effect on the bone cement (2001) Nurs, 11, p. 164
  • Verrier, S., Hughes, L., Alves, A., Peroglio, M., Alini, M., Boger, A., Evaluation of the in Vitro cell-material interactions and in vivo osteo-integration of a spinal acrylic bone cement (2012) Eur. Spine J, 21, p. s800
  • Rao, R.D., Singrakhia, M.D., Painful osteoporotic vertebral fracture. Pathogenesis, evaluation, and roles of vertebroplasty and kyphoplasty in its management (2010) J. Bone Jt Surg., 85 A. , 2003
  • Sugino, A., Miyazaki, T., Kawachi, G., Kikuta, K., Ohtsuki, C., Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane (2008) J. Mater. Sci. Mater. Med., 19, p. 1399
  • Lopes, P.P., Garcia, M.P., Fernandes, M.H., Fernandes, M.H.V., Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: Properties and biocompatibility assessment (2013) Mater. Sci. Eng. C. Mater. Biol. Appl., 33, p. 1289
  • Pazzaglia, U.E., Pathology of the bone-cement interface in looseling of total hip replacement (1990) Orthop. Trauma Surg., 109, p. 83
  • Zivic, F., Babic, M., Grujovic, N., Mitrovic, S., Adamovic, D., Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopedic AISI 316LVM stainless steel during reciprocating sliding (2013) Wear, 300, p. 65
  • Helgason, B., Stirnimann, P., Widmer, R., Boger, A., Ferguson, S.J., Influence of cement stiffness and bone morphology on the compressive properties of bone-cement composites in simulated vertebroplasty (2012) J. Biomed. Mater. Res. B. Appl. Biomater., 364 (101 B)
  • Lee, C., (2005) The Well-Cemented Total Hip Arthroplasty, pp. 60-66. , S. Breusch and H. Malchau, Springer Verlag, Berlin
  • Dunne, N., (2008) Orthopaedic Bone Cements, pp. 233-264. , S. Deb, Woodhead Publishing, Cambridge
  • Kuehn, K.-D., Ege, W., Gopp, U., Acrylic bone cements: Composition and properties (2005) Orthop. Clin. North Am., 36, p. 17
  • Liu-Snyder, P., Webster, T., Developing a new generation of bone cements with nanotechnology (2008) Curr. Nanosci, 4, p. 111
  • Khaled, S., Rizkalla, A., Charpentier, P., Development of a new generation of bone cements using nanotechnology (2008) AIChE Annual Meeting Conference Proceedings, pp. 1-8. , Philadelphia, USA
  • Nalwa, H.S., (2004) Encyclopedia of Nanoscience and Nanotechnology, , American Scientific Publishers, Los Angeles, CA
  • Nalwa, H.S., (2000) Handbook of Nanostructured Materials and Nanotechnology, , Academic Press, San Diego, CA
  • Khang, D., Lu, J., Yao, C., Haberstroh, K.M., Webster, T.J., The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium (2008) Biomaterials, 29, p. 970
  • Abboud, M., Vol, S., Duguet, E., Fontanille, M., PMMAbased composite materials with reactive ceramic fillers part III: Radiopacifying particle-reinforced bone cements (2000) J. Mater. Sci. Mater. Med., 11, p. 295
  • Deb, S., Abdulghani, S., Behiri, J.C., Radiopacity in bone cements using an organo-bismuth compound (2002) Biomaterials, 23, p. 3387
  • Roman, J.S., Lasa, B.V., Aguilar, M.R., Boesel, L.F., (2008) Orthropaedic Bone Cements, pp. 332-349. , S. Deb, Woodhead Publishing
  • Katti, K.S., Verma, D., Katti, D.R., (2008) Joint Replacement Technology, pp. 81-104. , P. A. Revell, Woodhead Publishing, London
  • Stojkovic, M., Milovanovic, J., Vitkovic, N., Trajanovic, M., Grujovic, N., Milivojevic, V., Milisavljevic, S., Mrvic, S., Reverse modeling and solid free-form fabrication of sternum implant (2010) Australas. Phys. Eng. Sci. Med., 33, p. 243
  • Kuhn, K.D., (2000) Bone Cements: Up-to-Date Comparison of Physical and Chemical Properties of Commercial Materials, , Springer, Berlin
  • Jasper, L.E., Deramond, H., Mathis, J.M., Belkoff, S.M., Material properties of various cements for use with vertebroplasty (2002) J. Mater. Sci. Mater. Med., 13 (1). , Delivered by Ingenta IP: 203.56.241.128 On: Sat, Copyright: American to: Elsevier BV 17 Sep 2016 23:44:28 Publishers
  • Lautenschlager, E.P., Jacobs, J.J., Marshall, G.W., Meyer, P.R., Mechanical properties of bone cements containing large doses of antibiotic powders (1976) J. Biomed. Mater. Res., 10, p. 929
  • Deramond, H., Dion, J.E., Chiras, J., (2002) Percutaneous Vertebroplasty, pp. 165-173. , J. M. Mathis, H. Deramond, and S. M. Belkoff, Springer, New York
  • Davies, J.P., O'Connor, D.O., Greer, J.A., Harris, W.H., Comparison of the mechanical properties of simplex P, zimmer regular, and LVC bone cement (1987) J. Biomed. Mater. Res., 21, p. 719
  • Lewis, G., Fatigue testing and performance of acrylic bone-cement materials: State-of-The-art review (2003) J. Biomed. Mater. Res., 457 (66 B)
  • Dunne, N.J., Orr, J.F., Thermal characteristics of curing acrylic bone cement (2001) ITBM-RBM, 22, p. 88
  • Mousa, W.F., Kobayashi, M., Shinzato, S., Kamimura, M., Neo, M., Yoshihara, S., Nakamura, T., Biological and mechanical properties of PMMA-based bioactive bone cements (2000) Biomaterials, 21, p. 2137
  • DiCicco, M., Compton, R., Jansen-Varnum, S.A., In vitro evaluation of orthopedic composite cytotoxicity: Assessing the potential for postsurgical production of hydroxyl radicals (2005) J. Biomed. Mater. Res. B Appl. Biomater., 72, p. 146
  • Erbe, E.M., Clineff, T.D., Gualtieri, G., Comparison of a new bisphenol-A-glycidyl dimethacrylate-based cortical bone void filler with polymethylmethacrylate (2001) Eur. Spine J., 10, p. S147
  • De, S., Vazquez, B., The effect of cross-linking agents on acrylic bone cements containing radiopacifiers (2001) Biomaterials, 22, p. 2177
  • Ohtsuki, C., Miyazaki, T., Kiomoto, M., Tanihara, M., Osaka, A., Development of bioactive PMMA-based cement by modification with alkoxysilane and calcium salt (2001) J. Mater. Sci. Mater. Med., 12, p. 895
  • Mori, A., Ohtsuki, C., Miyazaki, T., Sugino, M.A., Kuramoto, T.K., Osaka, A., Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate (2005) J. Mater. Sci. Mater. Med., 16, p. 713
  • Sugino, A., Ohtsuki, C., Miyazaki, T., In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate (2008) J. Biomater. Appl., 23, p. 213
  • Deb, S., A review of improvements in acrylic bone cements (1999) J. Biomater. Appl., 14, p. 16
  • Rungsiyanont, S., Dhanesuan, N., Swasdison, S., Kasugai, S., Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: Biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells (2012) J. Biomater. Appl., 27, p. 47
  • Fang, Z., Giambini, H., Zeng, H., Biomechanical evaluation of an injectable and biodegradable copolymer P (PF-co-CL) in a cadaveric vertebral body defect model (2013) Tissue Eng. Part A, 1
  • Drotleff, S., Lungwitz, U., Breunig, M., Dennis, A., Blunk, T., Tessmar, J., Göpferich, A., Biomimetic polymers in pharmaceutical and biomedical sciences. Eur (2004) J. Pharm. Biopharm., 58, p. 385
  • Kenny, S.M., Buggy, M., Bone cements and fillers: A review (2003) J. Mater. Sci. Mater. Med., 14, p. 923
  • Harper, J., Bioactive bone cements (1998) Proc. Inst. Mech. Eng H, 212, p. 113
  • Wang, M., (2004) Biomaterials and Tissue Engineering, pp. 1-82. , D. Shi, Springer Verlag, Berlin
  • Coelho, M.J., Fernandes, M.H., Human bone cell cultures in biocompatibility testing. Part II: Effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation (2000) Biomaterials, 21, p. 1095
  • Almeida, T., Ferreira, B.J.M.L., Loureiro, J., Correia, R.N., Santos, C., Preliminary evaluation of the in vitro cytotoxicity of PMMA-co-EHA bone cement (2011) Mater. Sci. Eng. C. Mater. Biol. Appl., 31, p. 658
  • Lopes, P.P., Ferreira, B.J.M.L., Almeida, N.A.F., Fredel, M.C., Fernandes, M.H.V., Correia, R.N., Preparation and study of in vitro bioactivity of PMMA-co-EHA composites filled with a Ca3 (PO4 )2 -SiO2 -MgO glass (2008) Mater. Sci. Eng. C. Mater. Biol. Appl., 28, p. 572
  • Lopes, P., Corbellini, M., Ferreira, B.L., Almeida, N., Fredel, M., Fernandes, M.H., Correia, R., New PMMA-co-EHA glass-filled composites for biomedical applications: Mechanical properties and bioactivity (2009) Acta Biomater, 5, p. 356
  • Nien, Y.-H., Lin, S., Hsu, Y.-N., Preparation and characterization of acrylic bone cement with high drug release (2013) Mater. Sci. Eng C. Mater. Biol. Appl., 33, p. 974
  • Van Mullem, P.J., De Wijin, J.R., Vaandrager, J.M., Porous acrylic cement: Evaluation of a novel implant material (1988) Ann. Plas. Surg., 21, p. 576
  • Virto, M.R., Frutos, P., Torrado, S., Frutos, G., Gentamicin release from modified acrylic bone cements with lactose and hydroxypropylmethylcellulose (2003) Biomaterials, 24, p. 79
  • Shi, M., Kretlow, J.D., Nguyen, A., Young, S., Baggett, L.S., Wong, M.E., Kasper, F.K., Mikos, A.G., Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control (2010) Biomaterials, 31, p. 4146
  • Uda, H., Sugawara, Y., Nakasu, M., Experimental studies on hydroxyapatite powder-carboxymethyl chitin composite: Injectable material for bone augmentation (2006) J. Plast. Reconstr. Aesthetic Surg., 59, p. 188
  • Barbosa, M.A., Granja, P.L., Barrias, C.C., Amaral, I.F., Polysaccharides as scaffolds for bone regeneration (2005) ITBM-RBM, 26, p. 212
  • Tautzenberger, A., Kovtun, A., Ignatius, A., Nanoparticles and their potential for application in bone. Int (2012) J. Nanomedicine, 7, p. 4545
  • Kim, S.B., Kim, Y.J., Yoon, T.L., Park, S.A., Cho, I.H., Kim, E.J., Kim, I.A., Shin, J.W., The characteristics of a hydroxyapatite-chitosan-PMMA bone cement (2004) Biomaterials, 25, p. 5715
  • Shi, Z., Neoh, K., Kang, E., Wang, W., Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles (2006) Biomaterials, 27, p. 2440
  • Chesnutt, B.M., Yuan, Y., Buddington, K., Haggard, W.O., Bumgardner, J.D., Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo (2009) Tissue Eng. Part A, 15, p. 2571
  • Peng, Z.-X., Wang, L., Du, L., Guo, S.-R., Wang, X.-Q., Tang, T.-T., Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium (2010) Carbohydr. Polym., 81, p. 275
  • Tan, H., Guo, S., Yang, S., Xu, X., Tang, T., Physical characterization and osteogenic activity of the quaternized chitosan-loaded PMMA bone cement (2012) Acta Biomater, 8, p. 2166
  • Qin, C., Du, Y., Xiao, L., Li, Z., Gao, X., Enzymic preparation of water soluble chitosan and their antitumoral activity (2002) Int. J. Biol. Macromol., 31, p. 111
  • No, H.K., Park, N.Y., Lee, S.H., Meyers, S.P., Antibacterial activity of chitosans and chitosan oligomers with different molecular weights (2002) Int. J. Food Microbiol., 74, p. 65
  • Park, P.J., Je, J.Y., Kim, S.K., Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer (2004) Carbohyd. Polym., 55, p. 17
  • Je, J.Y., Park, P.J., Kim, S.K., Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy (2004) Food Chem. Toxicol., 42 (381)
  • Halim, A.S., Keong, L.C., Zainol, I., Rashid, A.H.A., (2012) Chitosanbased Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, pp. 57-73. , B. Sarmento and J. das Neves, John Wiley & Sons, Chichester
  • Han, J., Ma, G., Nie, J., A facile fabrication of porous PMMA as a potential bone substitute (2011) Mater. Sci. Eng. C. Mater. Biol. Appl., 31, p. 1278
  • Kanjanathaworn, N., Polpanich, D., Jangpatarapongsa, K., Tangboriboonrat, P., Reduction of cytotoxicity of natural rubber latex film by coating with PMMA-chitosan nanoparticles (2013) Carbohydr. Polym., 97, p. 52
  • Bocourt, M., Monal, W.A.A., Rodriguez, J.V.C., May-Pat, A., Rivero, N.B., Covas, C.P., Interpenetrated chitosan-poly(acrilic acidco-acrylamide) hydrogel. Synthesis, characterization and sustained protein release studies (2011) Mater. Sci. Appl., 2, p. 509
  • Peter, M., Ganesh, N., Selvamurugan, N., Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications (2010) Carbohydr. Polym., 80, p. 687
  • Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R., Enhanced functions of osteoblasts on nanophase ceramics (2000) Biomaterials, 21, p. 1803
  • Vogel, M., Voigt, C., Gross, U.M., Müller-Mai, C.M., In vivo comparison of bioactive glass particles in rabbits (2001) Biomaterials, 22, p. 357
  • Xia, W., Chang, J., Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol-gel method (2007) Mater. Lett., 61, p. 3251
  • Karageorgiou, V., Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis (2005) Biomaterials, 26, p. 5474
  • May-Pat, A., Cervantes-Uc, J.M., Flores-Gallardo, S.G., Essential work of fracture: An approach to study the fracture behavior of acrylic bone cements modified with comonomers containing amine groups (2013) Polym. Test., 32, p. 291
  • Grad, S., Zhou, L., Gogolewski, S., Alini, M., Chondrocytes seeded onto poly(L/DL-lactide) 80%/20% porous scaffolds: A biochemical evaluation (2003) J. Biomed. Mater. Res A, 66, p. 571
  • Cervantes-Uc, J.M., Vázquez-Torres, H., Cauich-Rodríguez, J.V., Vázquez-Lasa, B., Del Barrio, J.S.R., Comparative study on the properties of acrylic bone cements prepared with either aliphatic or aromatic functionalized methacrylates (2005) Biomaterials, 26, p. 4063
  • Sabino, M.A., Ajami, D., Salih, V., Nazhat, S.N., Vargas-Coronado, R., Cauich-Rodríguez, J.V., Ginebra, M.P., Physicochemical, mechanical, and biological properties of bone cements prepared with functionalized methacrylates (2004) J. Biomater. Appl., 19, p. 147
  • May-Pat, A., Herrera-Kao, W., Cauich-Rodríguez, J.V., Cervantes-Uc, J.M., Flores-Gallardo, S.G., Comparative study on the mechanical and fracture properties of acrylic bone cements prepared with monomers containing amine groups (2012) J. Mech. Behav. Biomed. Mater., 6, p. 95
  • Van Hooy-Corstjens, C.S.J., Govaert, L.E., Spoelstra, A.B., Bulstra, S.K., Wetzels, G.M.R., Koole, L.H., Mechanical behaviour of a new acrylic radiopaque iodine-containing bone cement (2004) Biomaterials, 25, p. 2657
  • Lewis, G., Van Hooy-Corstjens, C.S.J., Koole, L.H., Influence of the radiopaque agent in an acrylic bone cement on its mechanical, thermal, and physical properties: Barium sulphate-containing versus iodine-containing cemen (2005) J. Biomed. Mat. Res. B, 73, p. 77
  • Van Hooy-Corstjens, C.S., Bulstra, S.K., Knetsch, M.L., Geusens, P., Kuijer, R., Koole, L.H., Biocompatibility of a new radiopaque iodine-containing acrylic bone cement (2007) J. Biomed. Mater. Res. B Appl. Biomater, 80, p. 339
  • Hernández, L., Fernández, M., Collía, F., Gurruchaga, M., Goñi, I., Preparation of acrylic bone cements for vertebroplasty with bismuth salicylate as radiopaque agent (2006) Biomaterials, 27, p. 100
  • Bhambri, S.K., Gilbertson, L.N., Micromechanisms of fatigue crack initiation and propagation in bone cement (1995) J. Biomed. Mater. Res., 29, p. 233
  • Ginebra, M.P., Albuixech, L., Fernández-Barragán, E., Aparicio, C., Gil, F.J., San Román, J., Vázquez, B., Planell, J.A., Mechanical performance of acrylic bone cements containing different radiopacifying agents (2002) Biomaterials, 23, p. 1873
  • Goto, K., Hashimoto, M., Fujibayashi, S., Kokubo, T., Nakamura, T., New bioactive bone cement containing nano-sized titania particles (2005) Key Eng. Mater., 284-296, p. 97
  • Ricker, A., Liu-Snyder, P., Webster, T., The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement (2008) Int. J. Nanomedicine, 3, p. 125
  • Khaled, S.M.Z., Charpentier, P.A., Rizkalla, A.S., Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers (2011) J. Biomater. Appl., 25, p. 515
  • Guida, A., Towler, M.R., Wall, J.G., Hill, R.G., Eramo, S., Preliminary work on the antibacterial effect of strontium in glass ionomer cements (2003) J. Mater. Sci. Lett., 22, p. 1401
  • Khaled, S.M., Sui, R., Charpentier, P.A., Rizkalla, A.S., Synthesis of TiO2 -PMMA nanocomposite: Using methacrylic acid as a coupling agent (2007) Langmuir, 23, p. 3988
  • Lewis, G., Xu, J., Madigan, S., Towler, M.R., Influence of strontia on various properties of surgical Simplex P acrylic bone cement and experimental variants (2007) Acta Biomater, 3, p. 970
  • Khaled, S.M.Z., Charpentier, P.A., Rizkalla, A.S., Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2 -SrO nanotubes (2010) Acta Biomater, 6, p. 3178
  • Gillani, R., Ercan, B., Qiao, A., Webster, T.J., Nanofunctionalized zirconia and barium sulfate particles as bone cement additives (2010) Int. J. Nanomedicine, 5, p. 1
  • Adams, M.A., Dolan, P., Biomechanics of vertebral compression fractures and clinical application (2011) Arch. Orthop. Trauma Surg., 131, p. 1703
  • Mercer, C., He, M.Y., Wang, R., Evans, A.G., Mechanisms governing the inelastic deformation of cortical bone and application to tabecular bone (2006) Acta Biomater, 2, p. 59
  • Luo, J., Pollintine, P., Gomm, E., Dolan, P., Adams, M.A., Vertebral deformity arising from an accelerated "creep" mechanism (2012) Eur. Spine J., 21, p. 1684
  • Gutiérrez-Mejía, A., Herrera-Kao, W., Duarte-Aranda, S., Loría-Bastarrachea, M.I., Canché-Escamilla, G., Moscoso-Sánchez, F.J., Cauich-Rodríguez, J.V., Cervantes-Uc, M.J., Synthesis and characterization of core-shell nanoparticles and their influence on the mechanical behavior of acrylic bone cements (2013) Mater. Sci. Eng. C, 33, p. 1737
  • Arora, M., Chan, E.K.S., Gupta, S., Diwan, A.D., Polymethylmethacrylate bone cements and additives: A review of the literature. World (2013) J. Orthop., 4, p. 67
  • Beck, S., Boger, A., Evaluation of the particle release of porous PMMA cements during curing (2009) Acta Biomater, 5, p. 2503
  • Bellare, A., Turell, M.E., Gomoll, A., Thornhill, T.S., Fatigue fracture of poly(methyl methacrylate) bone cement containing radiopacifier nanoparticles (2005) International Conference on Fracture Turin, , Italia
  • Gomoll, A.H., Fitz, W., Scott, R.D., Thornhill, T.S., Bellare, A., Nanoparticulate fillers improve the mechanical strength of bone cement (2008) Acta Orthop, 79, p. 421
  • McNally, T., Pötschke, P., Halley, P., Murphy, M., Martin, D., Bell, S.E.J., Brennan, G.P., Quinn, J.P., Polyethylene multiwalled carbon nanotube composites (2005) Polymer, 46 (8222)
  • McClory, C., McNally, T., Brennan, G., Erskine, J., Thermosetting polyurethane multiwalled carbon nanotube composites (2007) J. Appl. Polym. Sci., 105, p. 1003
  • Marrs, B., Andrews, R., Rantell, T., Pienkowski, D., Augmentation of acrylic bone cement with multiwall carbon nanotubes (2006) J. Biomed. Mater. Res., 77, p. 269
  • Lissarrague, M.H., Lamanna, M.E., D'Accorso, N.B., Goyanes, S., Effects of different nucleating particles on aniline polymerization (2012) Synth. Met, 162, p. 1052
  • De Falco, A., Fascio, M.L., Lamanna, M.E., Corcuera, M.A., Mondragon, I., Rubiolo, G.H., D'Accorso, N.B., Goyanes, S., Thermal treatment of the carbon nanotubes and their functionalization with styrene (2009) Phys. B Condens. Matter, 404, p. 2780
  • Webster, T.J., Waid, M.C., McKenzie, J.L., Price, R.L., Ejiofor, J.U., Nano-biotechnology: Carbon nanofibres as improved neural and orthopaedic implants (2004) Nanotech, 15, p. 48
  • Andrews, R., Weisenberger, M.C., Carbon nanotube polymer composites (2004) Curr. Opin. Solid State Mater, 8, p. 31
  • De Falco, A., Lamanna, M., Goyanes, S., D'Accorso, N., Fascio, M., Thermomechanical behaviour of SBR reinforced with carbon nanotubes functionalized with polyvinylpyridine (2012) Phys. B Condens. Matter, 407, p. 3175
  • Andrews, R., Jaqques, D., Qian, D., Rantell, T., Multiwall carbon nanotubes: Synthesis and application (2002) J. Acc. Chem. Res., 35, p. 1008
  • Xie, X.L., Mai, Y.W., Zhou, X.P., Dispersion and alignment of carbon nanotubes in polymer matrix: A review (2005) Mater. Sci. Eng. R, 49, p. 89
  • Ormsby, R., McNally, T., Mitchell, C., Dunne, N., Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: Effects on mechanical and thermal properties (2010) J. Mech. Behav. Biomed. Mater., 3, p. 136
  • Ormsby, R., McNally, T., O'Hare, P., Burke, G., Mitchell, C., Dunne, N., Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes (2012) Acta Biomater, 8, p. 1201
  • Ormsby, R., McNally, T., Mitchell, C., Halley, P., Martin, D., Nicholson, T., Dunne, N., Effect of MWCNT addition on the thermal and rheological properties of polymethyl methacrylate bone cement (2011) Carbon, 49, p. 2893
  • Nien, Y.-H., Huang, C., The mechanical study of acrylic bone cement reinforced with carbon nanotube (2010) Mater. Sci. Eng. B, 169, p. 134
  • Veetil, J.V., Ye, K., Tailored carbon nanotubes for tissue engineering applications (2009) Biotechnol. Prog., 25, p. 709
  • Zhang, F.-A., Lee, D.-K., Pinnavaia, J.T., Pinnavaia, PMMA/mesoporous silica nanocomposites: Effect of framework structure and pore size on thermomechanical properties (2010) Polym. Chem, 1, p. 107
  • Fu, S.-Y., Feng, X.-Q., Lauke, B., Mai, Y.-W., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites (2008) Compos. Part B, 39, p. 933
  • Zhang, F.-A., Lee, D.-K., Pinnavaia, J.T., Pinnavaia, PMMA-mesocellular foam silica nanocomposites prepared through batch emulsion polymerization and compression molding (2009) Polymer, 50, p. 4768
  • Samuel, S.P., Li, S., Mukherjee, I., Guo, Y., Patel, A.C., Baran, G., Wei, Y., Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers (2009) Dent. Mater, 25, p. 296
  • Shen, S.-C., Ng, W.K., Shi, Z., Chia, L., Neoh, K.G., Tan, R.B.H., Mesoporous silica nanoparticle-functionalized poly(methyl methacrylate)-based bone cement for effective antibiotics delivery (2011) J. Mater. Sci. Mater. Med., 22, p. 2283
  • Slane, J., Vivanco, J., Meyer, J., Ploeg, H.L., Squire, M., Modification of acrylic bone cement with mesoporous silica nanoparticles: Effects on mechanical, fatigue and absorption properties (2013) J. Mech. Behav. Biomed. Mater., 29, p. 451
  • Wang, K., Chen, Y., Zhang, Y., Effects of reactive compatibilizer on the core-shell structured modifiers toughening of poly(trimethylene terephthalate) (2009) Polymer, 50, p. 1483
  • Pérez-Carrillo, L.A., Puca, M., Rabelero, M., Meza, K.E., Puig, J.E., Mendizábal, E., López-Serrano, F., López, R.G., Effect of particle size on the mechanical properties of polystyrene and poly(butyl acrylate) core/shell polymers (2007) Polymer, 48, p. 1212
  • Dorigato, A., Dzenis, Y., Pegoretti, A., Filler aggregation as a reinforcement mechanism in polymer nanocomposites (2013) Mech. Mater., 61, p. 79
  • Perek, J., Pilliar, R.M., Fracture toughness of composite acrylic bone cements (1992) J. Mater. Sci. Mater. Med., 3, p. 333
  • Murakami, A., Behiri, J.C., Bonfield, W., Rubber-modified bone cement (1988) J. Mater. Sci., 23, p. 2029
  • Walsh, W.R., Svehla, M.J., Russell, J., Saito, M., Nakashima, T., Gillies, R.M., Bruce, W., Hori, R., Cemented fixation with PMMA or bis-GMA resin hydroxyapatite cement: Effect of implant surface roughness (2004) Biomaterials, 25, p. 4929
  • Pielichowska, K., Blazewicz, S., (2010) Bioactive Polymer/ Hydroxyapatite (Nano) Composites for Bone Tissue Regeneration Biopolymers, 232, pp. 97-207. , A. Abe, K. Dusek, and S. Kobayashi, Springer, Berlin
  • Dalby, M.J., Silvio, L.D., Harper, E.J., Bonfield, W., Initial interaction of osteoblasts with the surface of a hydroxyapatitepoly(methylmethacrylate) cement (2001) Biomaterials, 22, p. 1739
  • Saito, T., Kin, Y., Koshino, T., Osteogenic response of hydroxyapatite cement implanted into the femur of rats with experimentally induced osteoporosis (2002) Biomaterials, 23, p. 2711
  • Li, Z., Yubao, L., Yi, Z., Lan, W., Jansen, J.A., In vitro and in vivo evaluation on the bioactivity of ZnO containing nanohydroxyapatite/chitosan cement (2010) J. Biomed. Mat. Res. Part A, 93, p. 269
  • Zong, C., Qian, X., Tang, Z., Hu, Q., Chen, J., Gao, C., Tang, R., Wang, J., Biocompatibility and bone-repairing effects: Comparison between porous poly-lactic-co-glycolic acid and nanohydroxyapatite/poly(lactic acid) scaffolds (2013) J. Biomed. Nanotechnol., 9, p. 1
  • Erbetc, K.S., Korkusuz, F., Hasirci, N., Mechanical and thermal properties of hydroxyapatite-impregnated bone cement (2000) Turkish J. Med. Sci., 30, p. 543
  • Serbetci, K., Korkusuz, F., Hasirci, N., Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements (2004) Polym. Test., 23, p. 145
  • Zebarjad, S.M., Sajjadi, S.A., Sdrabadi, T.E., Yaghmaei, A., Naderi, B., A study on mechanical properties of PMMA/ hydroxyapatite nanocomposite (2011) Engineering, 3, p. 795
  • Ormsby, R., McNally, T., Mitchell, C.A., Dunne, N., Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements (2010) J. Mater. Sci. Mater. Med., 21, p. 2287
  • Eriksson, A.R., Albrektsson, T., Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit (1983) J. Prosthet. Dent., 50, p. 101
  • Lai, P.-L., Chen, L.-H., Chen, W.-J., Chu, I., Chemical and physical properties of bone cement for vertebroplasty (2013) Biomed J., 36, p. 162
  • Dunne, N.J., Orr, J.F., Curing characteristics of acrylic bone cement (2002) J. Mater. Sci. Mater. Med., 13, p. 17
  • Meyer, P.R., Lautenschlager, E.P., Moore, B.K., On the setting properties of acrylic bone cement (1973) J. Bone Joint Surg, 55, p. 149
  • Larsen, S.T., Franzen, S., Ryd, L., Cement interface temperature in hip arthroplasty (1991) Acta Orthop. Scand., 62, p. 102
  • Lidgren, L., Bodelind, B., Möller, J., Bone cement improved by vacuum mixing and chilling (1987) Acta Orthop, 58 (27)
  • Saha, S., Pal, S., Mechanical characterization of commercially made carbonfibre-reinforced polymethylmethacrylate (1986) J. Biomed. Mater. Res., 20, p. 817
  • Fukuda, C., Goto, K., Imamura, M., Nakamura, T.J., Bioactive bone cement with a low content of titania particles without postsilanization: Effect of filler content on osteoconductivity, mechanical properties, and handling characteristics (2010) Biomed. Mater. Res. Part B, 95, p. 407
  • Narva, K.K., Lassila, L.V.J., Vallittu, P.K., Flexural fatigue of denture base polymer with fiber-reinforced composite reinforcement (2005) Compos. Part A Appl. Sci. Manuf., 36, p. 1257
  • Opara, T.N., Dalby, M.J., Harper, E.J., Silvio, L.D., Bonfield, W., The effect of varying percentage hydroxyapatite in poly(ethylmethacrylate) bone cement on human osteoblast-like cells (2003) J. Mater. Sci.: Mater. Med., 14, p. 277
  • Liu, Y., Luo, D., Liu, S., Fu, Y., Kou, X., Wang, X., Sha, Y., Zhou, Y., Effect of nanostructure of mineralized collagen scaffolds on their physical properties and osteogenic potential (2014) J. Biomed. Nanotechnol., 10, p. 1049
  • Endogan, T., Serbetci, K., Hasirci, N., Effects of ingredients on thermal and mechanical properties of acrylic bone cements (2009) J. Appl. Polym. Sci., 113, p. 4077
  • Hernández, L., Gurruchaga, M., Goñi, I., Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour (2009) J. Mater. Sci. Mater. Med., 20, p. 89
  • Goto, K., Tamura, J., Shinzato, S., Bioactive bone cements containing nano-sized titania particles for use as bone substitutes (2005) Biomaterials, 26, p. 6496
  • Johnson, A.R., Armstrong, W.D., Singer, L., The incorporation and removal of large amounts of strontium by physiologic mechanisms in mineralized tissues (1968) Calcif. Tissue Res, 2, p. 242
  • Marie, P.J., Ammann, P., Boivin, G., Rey, C., Mechanisms of action and therapeutic potential of strontium in bone Calcif, , Tissue
  • Smart, S.K., Cassady, A.I., Lu, G.Q., Martin, D.J., The biocompatibility of carbon nanotubes (2006) Carbon, 44, p. 1034
  • Pascual, B., Vázquez, B., Gurruchaga, M., Goñi, I., Ginebra, M.P., Gil, F.J., Planell, J.A., Román, J.S., New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements (1996) Biomaterials, 17, p. 509
  • Sondi, I., Goia, D.V., Matijevic, E., Preparation of highly concentrated stable dispersions of uniform silver nanoparticles (2003) J. Colloid. Interface Sci., 260, p. 75
  • Riley, D.K., Classen, D.C., Stevens, L.E., Burke, J.P., A large randomized clinical trial of a silver-impregnated urinary catheter: Lack of efficacy and staphylococcal superinfection (1995) Am. J. Med., 98, p. 349
  • Crabtree, J.H., Burchette, R.J., Siddiqi, R.A., Huen, I.T., Hadnott, L.L., Fishman, A., The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections (2003) Perit. Dial. Int., 23, p. 368
  • Furno, F., Morley, K.S., Wong, B., Sharp, B.L., Arnold, P.L., Howdle, S.M., Bayston, R., Reid, H.J., Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? (2004) J. Antimicrob. Chemother, 54, p. 19
  • Fan, C., Chu, L., Rawls, H.R., Norling, B.K., Cardenas, H.L., Whang, K., Development of an antimicrobial resin. A pilot study (2011) Dent. Mater., 27, p. 322
  • Oei, J.D., Zhao, W.W., Chu, L., DeSilva, M.N., Ghimire, A., Rawls, H.R., Whang, K., Antimicrobial acrylic materials with in situ generated silver nanoparticles (2011) J. Biomed. Mater. Res. B Appl. Biomater., 409 (100 B)
  • Yazdimamaghani, M., Vashaee, D., Assefa, S., Walker, K.J., Madihally, S.V., Köhler, G.A., Tayebi, L., Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering (2014) J. Biomed. Nanotechnol., 10, p. 911
  • Prokopovich, P., Leech, R., Carmalt, C.J., Parkin, I.P., Perni, S., A novel bone cement impregnated with silver-tiopronin nanoparticles: Its antimicrobial, cytotoxic, and mechanical properties (2013) Int. J. Nanomedicine, 8, p. 2227
  • Harris, W.H., Sledge, C.B., The total hip and total knee replacement (Part II) (1990) N. Engl. J. Med., 323, p. 801
  • Fernández, M., Méndez, J.A., Vázquez, B., Román, J.S., Ginebra, M.P., Gil, F.J., Manero, J.M., Planell, J.A., Acrylicphosphate glasses composites as self-curing controlled delivery systems of antibiotics (2002) J. Mater. Sci. Mater. Med., 13, p. 1251
  • Hanssen, A.D., Prophylactic use of antibiotic bone cement (2004) J. Arthroplasty, 19, p. 73
  • Nandi, S.K., Mukherjee, P., Roy, S., Kundu, B., De, D.K., Basu, D., Local antibiotic delivery systems for the treatment of osteomyelitis (2009) A Review. Mater. Sci. Eng. C, 29, p. 2478
  • Krasko, M.Y., Golenser, J., Nyska, A., Nyska, M., Brin, Y.S., Domb, A.J., Gentamicin extended release from an injectable polymeric implant (2007) J. Control Release, 117, p. 90
  • Bourne, R.B., Prophylactic use of antibiotic bone cement (2004) J. Arthroplasty, 19, p. 69
  • Lissarrague, M.H., Garate, H., Lamanna, M.E., D'Accorso, N.B., Goyanes, S.N., Medicinal patches and drug nanoencapsulation: A noninvasive, alternative (2013) Nanomedicine for Drug Delivery and Therapeutics, pp. 343-378. , A. K. Mishra, Wiley-Scrivener, Beverly
  • Gu, W., Wu, C., Chen, J., Xiao, Y., Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration (2013) Int. J. Nanomedicine, 8, p. 2305
  • Otsuka, M., Nakahigashi, Y., Matsuda, Y., Fox, J.L., Higuchi, W.I., Sugiyama, Y., Effect of geometrical cement size on in vitro and in vivo indomethacin release from self-setting apatite cement (1998) J. Control Release, 52, p. 281
  • Hendriks, J.G.E., Ensing, G.T., Van Horn, J.R., Lubbers, J., Van Der Mei, H.C., Busscher, H.J., Increased release of gentamicin from acrylic bone cements under influence of low-frequency ultrasound (2003) J. Control Release, 92, p. 369
  • Hendriks, J.G.E., Van Horn, J.R., Van Der Mei, H.C., Busscher, H.J., Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection (2004) Biomaterials, 25, p. 545
  • Schade, V.L., Roukis, T.S., The role of polymethylmethacrylate antibiotic-loaded cement in addition to debridement for the treatment of soft tissue and osseous infections of the foot and ankle (2010) J. Foot Ankle Surg., 49, p. 55
  • Spicer, P.P., Shah, S.R., Henslee, A.M., Watson, B.M., Kinard, L.A., Kretlow, J.D., Bevil, K., Kasper, F.K., Evaluation of antibiotic releasing porous polymethylmethacrylate space maintainers in an infected composite tissue defect model (2013) Acta Biomater, 9 (8832)
  • Wei, W., Abdullayev, E., Hollister, A., Mills, D., Lvov, Y.M., Clay nanotube/poly(methyl methacrylate) bone cement composites with sustained antibiotic release (2012) Macromol. Mater. Eng., 297, p. 645
  • Van De Belt, H., Neut, D., Schenk, W., Van Horn, J.R., Van Der Mei, H.C., Busscher, H.J., Infection of orthopedic implants and the use of antibiotic-loaded bone cements: A review (2001) Acta Orthop. Scand., 72, p. 557
  • Lewis, G., Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties: A state-of-The-art review (2009) J. Biomed. Mater. Res. B Appl. Biomater., 89, p. 558
  • Jiranek, W.A., Hanssen, A.D., Greenwald, A.S., Antibioticloaded bone cement for infection prophylaxis in total joint replacement (2006) J. Bone Jt Surg., 88, p. 2487
  • Anagnostakos, K., Kelm, J., Enhancement of antibiotic elution from acrylic bone cement (2009) J. Biomed. Mater. Res. B. Appl. Biomater., 90, p. 467
  • Moojen, D.J.F., Hentenaar, B., Vogely, H.C., Verbout, A.J., Castelein, R.M., Dhert, W.J.A., In vitro release of antibiotics from commercial PMMA beads and articulating hip spacers (2008) J. Arthroplasty, 23, p. 1152
  • Squire, M.W., Ludwig, B.J., Thompson, J.R., Jagodzinski, J., Hall, D., Andes, D., Premixed antibiotic bone cement: An in vitro comparison of antimicrobial efficacy (2008) J. Arthroplasty, 23, p. 110
  • Padilla, S., Del Real, R.P., Vallet-Regí, M., In vitro release of gentamicin from OHAp/PEMA/PMMA samples (2002) J. Control Release, 83, p. 343
  • Rasyid, H.N., Van Der Mei, H.C., Frijlink, H.W., Soegijoko, S., Van Horn, J.R., Busscher, H.J., Neut, D., Concepts for increasing gentamicin release from handmade bone cement beads (2009) Acta Orthop, 80, p. 508
  • McLaren, A.C., McLaren, S.G., Smeltzer, M., Xylitol and glycine fillers increase permeability of PMMA to enhance elution of daptomycin (2006) Clin. Orthop. Relat. Res., 451, p. 25
  • Xue, J.M., Shi, M., PLGA/mesoporous silica hybrid structure for controlled drug release (2004) J. Control Release, 98, p. 209
  • Slowing, I.I., Trewyn, B.G., Giri, S., Lin, S.-Y., Mesoporous silica nanoparticles for drug delivery and biosensing applications (2007) Adv. Funct. Mater., 17, p. 1225
  • Doadrio, A.L., Sousa, E.M.B., Doadrio, J.C., Pariente, J.P., Izquierdo-Barba, I., Vallet-Regí, M., Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery (2004) J. Control Release, 97, p. 125
  • Wahlig, H., Dingeldein, E., Antibiotics and bone cements: Experimental and clinical long-term observations (1980) Acta Orthop. Scand., 51, p. 49
  • Whelton, A., The aminoglycosides (1984) Clin. Orthop., 190, p. 66
  • Zhang, X., Wyss, U.P., Pichora, D., Goosen, M.E.A., Biodegradable controlled antibiotic release devices for osteomyelitis: Optimization of release properties (1994) J. Pharm. Pharmacol., 46, p. 718

Citas:

---------- APA ----------
Lissarrague, M.H., Fascio, M.L., Goyanes, S. & D'Accorso, N.B. (2014) . Acrylic bone cements: The role of nanotechnology in improving osteointegration and tunable mechanical properties. Journal of Biomedical Nanotechnology, 10(12), 3536-3557.
http://dx.doi.org/10.1166/jbn.2014.2045
---------- CHICAGO ----------
Lissarrague, M.H., Fascio, M.L., Goyanes, S., D'Accorso, N.B. "Acrylic bone cements: The role of nanotechnology in improving osteointegration and tunable mechanical properties" . Journal of Biomedical Nanotechnology 10, no. 12 (2014) : 3536-3557.
http://dx.doi.org/10.1166/jbn.2014.2045
---------- MLA ----------
Lissarrague, M.H., Fascio, M.L., Goyanes, S., D'Accorso, N.B. "Acrylic bone cements: The role of nanotechnology in improving osteointegration and tunable mechanical properties" . Journal of Biomedical Nanotechnology, vol. 10, no. 12, 2014, pp. 3536-3557.
http://dx.doi.org/10.1166/jbn.2014.2045
---------- VANCOUVER ----------
Lissarrague, M.H., Fascio, M.L., Goyanes, S., D'Accorso, N.B. Acrylic bone cements: The role of nanotechnology in improving osteointegration and tunable mechanical properties. J. Biomed. Nanotechnol. 2014;10(12):3536-3557.
http://dx.doi.org/10.1166/jbn.2014.2045