Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Electrospinning is a versatile technique for generating a mat of continuous fibers with diameters from a few nanometers to several micrometers. The diversity of electrospinnable materials, and the unique features associated with electrospun fibers make this technique and its resultant structures attractive for applications in the biomedical field. This article presents an overview of this technique focusing on its application for tissue engineering. In particular, the advantages and disadvantages of using an electrospinning mat for biomedical applications are discussed. It reviews the different available electrospinning configurations, detailing how the different process variables and material types determine the obtained fibers characteristics. Then a description of how nanofiber based scaffolds offer great promise in the regeneration or function restoration of damaged or diseased bones, muscles or nervous tissue is reported. Different methods for incorporating active agents on nanofibers and controlling their release mechanisms are also reviewed. The review concludes with some personal perspectives on the future work to be done in order to include electrospinning technique in the industrial development of biomedical materials. © 2014 American Scientific Publishers.

Registro:

Documento: Artículo
Título:Electrospun nanofibrous mats: From vascular repair to osteointegration
Autor:Ribba, L.; Parisi, M.; D'Accorso, N.B.; Goyanes, S.
Filiación:Departamento de Física, Facultad de Ciencias Exactas Y Naturales-UBA, Ciudad Universitaria C1428 EHA, Ciudad Autónoma de Buenos Aires, Argentina
Departamento de Química Orgánica, Facultad de Ciencias Exactas Y Naturales-UBA, Ciudad Universitaria C1428 EHA, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Biomedical materials; Drug delivery; Electrospinning; Nanofibers.; Osseointegration; Scaffolds; Tissue engineering; Biomedical engineering; Drug delivery; Medical applications; Nanofibers; Scaffolds; Scaffolds (biology); Spinning (fibers); Tissue; Tissue engineering; Tissue regeneration; Biomedical applications; Biomedical fields; Biomedical material; Electrospinning techniques; Electrospun fibers; Industrial development; Osseointegration; Personal perspective; Electrospinning; bone prosthesis; nanofiber; animal; blood vessel prosthesis; bone prosthesis; bone regeneration; chemistry; devices; electroplating industry; equipment design; human; physiology; procedures; synthesis; tissue engineering; tissue scaffold; ultrastructure; Animals; Blood Vessel Prosthesis; Bone Substitutes; Electroplating; Equipment Design; Humans; Nanofibers; Osseointegration; Tissue Engineering; Tissue Scaffolds
Año:2014
Volumen:10
Número:12
Página de inicio:3508
Página de fin:3535
DOI: http://dx.doi.org/10.1166/jbn.2014.2046
Título revista:Journal of Biomedical Nanotechnology
Título revista abreviado:J. Biomed. Nanotechnol.
ISSN:15507033
CAS:Bone Substitutes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507033_v10_n12_p3508_Ribba

Referencias:

  • Lukehart, C.M., Scott, R.A., (2008) Nanomaterials: Inorganic and Bioinorganic Perspectives, , John Wiley & Sons, Chichester, West Sussex
  • Nalwa, H.S., (2004) Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 1. , Los Angeles, CA
  • Nalwa, H.S., (2000) Handbook of Nanostructured Materials and Nanotechnology, 1-5. , Academic Press, San Diego, CA
  • Wendorff, J.H., Agarwal, S., Greiner, A., (2012) Electrospinning: Materials, Processing, and Applications, , Wiley-VCH, Weinheim
  • Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C., Ma, Z., (2005) An Introduction to Electrospinning and Nanofibers, , World Scientific Publishing Co., Singapore
  • Wang, X., Ding, B., Sun, G., Wang, M., Yu, J., Electrospinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets (2013) Prog. Mater. Sci., 58, p. 1173
  • Bhardwaj, N., Kundu, S.C., Electrospinning: A fascinating fiber fabrication technique (2010) Biotechnol. Adv., 28, p. 325
  • Tong, L., Xungai, W., (2011) Encyclopedia of Nanoscience and Nanotechnology, 16, pp. 447-464. , edited by H. S. Nalwa, American Scientific Publishers, Los Angeles, CA
  • Lu, P., Ding, B., Applications of electrospun fibers (2008) Recent. Pat. Nanotech., 2, p. 169
  • Woodarda, J.R., Hilldorea, A.J., Lanb, S.K., Parkb, C.J., Morganb, A.W., Eurellc, J.C., Clarkd, S.G., Johnson, A.J.W., The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity (2007) Biomaterials, 28, p. 45
  • Li, C., Vepari, C., Jin, H.J., Kim, H.J., Kaplan, D.L., Electrospun silk-BMP-2 scaffolds for bone tissue engineering (2006) Biomaterials, 27, p. 3115
  • Bhattacharyya, S., Kumbar, S.G., Khan, Y.M., Nair, L.S., Singh, A., Krogman, N.R., Brown, P.W., Laurencin, C.T., Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: Scaffolds for bone tissue engineering (2009) J. Biomed. Nanotechnol., 5, p. 69
  • Jaiswal, A.K., Dhumal, R.V., Ghosh, S., Chaudhari, P., Nemani, H., Soni, V.P., Vanage, G.R., Bellare, J.R., Bone healing evaluation of nanofibrous compositescaffolds in rat calvarial defects: A comparative study (2013) J. Biomed. Nanotechnol., 9, p. 2073
  • Cheng, Y., Ramos, D., Lee, P., Liang, D., Yu, X., Kumbar, S.G., Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: Bone tissue engineering (2014) J. Biomed. Nanotechnol., 10, p. 287
  • Remya, K.R., Joseph, J., Mani, S., John, A., Varma, H.K., Ramesh, P., Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone-polyethyleneglyco l-polycaprolactone blend scaffold for bone tissue engineering applications (2013) J. Biomed. Nanotechnol., 9, p. 1483
  • Lee, J.B., Park, H.N., Ko, W.K., Bae, M.S., Heo, D.N., Yang, D.H., Kwon, I.K., Poly(L-lactic acid)/hydroxyapatite nanocylinders as nanofibrous structure for bone tissue engineering scaffolds (2013) J. Biomed. Nanotechnol., 9, p. 424
  • Zargarian, S.S., Haddadi-Asl, V., A nanofibrous composite scaffold of PCL/hydroxyapatite-chitosan/PVA prepared by electrospinning (2010) Iran. Polym J., 19, p. 457
  • Zheng, W., Zhang, W., Jiang, X., Biomimetic collagen nanofibrous materials for bone tissue engineering (2010) Adv. Eng. Mater, 12, p. B451
  • Gergely, G., Lukács, I.E., Tóth, M., Illés, L., Wéber, F., Balázsi, Cs., Hydroxyapatite biopolymer mats by electrospinning (2010) Eur. Cells Mater., 20, p. 9
  • Poinern, G.E.J., Brundavanam, R.K., Fawcett, D., Nanometre scale hydroxyapatite ceramics for bone tissue engineering. Am (2013) J. Biomed. Eng., 3, p. 148
  • Tavakoli-Darestani, R., Kazemian, G., Emami, M., Kamrani-Rad, A., Poly(lactide-co-glycolide) nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering (2013) Novel. Biomed., 1, p. 8
  • Lao, L., Wang, Y., Zhang, Y., Zhu, Y., Gao, C., Poly(lactide-coglycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering (2011) Mater. Med., 22, p. 1873
  • Krucińska, I., Boguń, M., Chrzanowska, O., Chrzanowski, M., Król, P., Research concerning fabrication of fibrous osteoconductive PLGA/HAp nanocomposite material using the method of electrospinning from polymer solution (2013) AUTEX Res. J., 13, p. 57
  • Nivison-Smith, L., Weiss, A.S., Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers (2012) J. Biomed. Mater. Res., 100, p. 155
  • Aviss, K.J., Gough, J.E., Downes, S., Aligned electrospun polymer fibers for skeletal muscle regeneration (2010) Eur. Cells Mater., 19, p. 193
  • Ravichandran, R., Venugopal, J.R., Sundarrajan, S., Mukherjee, S., Ramakrishna, S., Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly(glycerol sebacate)/collagen core/shell fibers (2013) World J. Cardiol., 26, p. 28
  • Xu, Y., Wu, J., Wang, H., Li, H., Di, N., Song, L., Li, S., Zhou, Q., Fabrication of electrospun poly(L-lactide-co-e-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering (2013) Tissue Eng C, 19, p. 925
  • Chainani, A., Hippensteel, K.J., Kishan, A., Garrigues, N.W., Ruch, D.S., Guilak, F., Little, D., Multilayered electrospun scaffolds for tendon tissue engineering (2013) Tissue Eng. Part A, 19, p. 2594
  • Graham, M.V., Cady, N.C., Nano and microscale topographies for the prevention of bacterial surface fouling (2014) Coatings, 4, p. 37
  • Sharma, U., Pham, Q., Marini, J., (2013) Electrospinning Process for Fiber Manufacture
  • Sharma, U., Pham, Q., Marini, J., Yan, X., Core, L., (2013) Electrospinning Process for Manufacture of Multi-Layered Structures
  • Sunthornvarabhas, J., Reneker, D.H., Chase, G.G., (2012) Bubble Launched Electrospinning Jets
  • Xu, W., Lee, S.J., Recent patents on implantable drug/protein delivery systems fabricated using electrospinning (2012) Recent. Pat. Biomed. Eng., 5, p. 14
  • Shabafrooz, V., Mozafari, M., Vashaee, D., Tayebi, L., Electrospun nanofibers: From filtration membranes to highly specialized tissue engineering scaffolds (2014) J. Nanosci. Nanotechnol., 14, p. 522
  • Taylor, G., Electrically driven jets (1969) Proc. R. Soc. Lond., A313, p. 453
  • Li, Z., Wang, C., (2013) One-Dimensional Nanostructures, Electrospinning Technique and Unique Nanofibers, pp. 1-13. , edited by Z. Li and C. Wang, Springer Briefs in Materials, Berlin Chap. 1
  • Seth, A., Katti, D.S., A one-step electrospray-based technique for modulating morphology and surface properties of poly(lactideco-glycolide) microparticles using pluronics® (2012) Int. J. Nanomed., 7, p. 5129
  • Hao, S., Wang, Y., Wang, B., Deng, J., Liu, X., Liu, J., Rapid preparation of pH-sensitive polymeric nanoparticle with high loading capacity using electrospray for oral drug delivery (2013) Mater. Sci. Eng., C33, p. 4562
  • Nartetamrongsutt, K., Chase, G.G., The influence of salt and solvent concentrations on electrospun polyvinylpyrrolidone fiber diameters and bead formation (2013) Polymer, 54, p. 2166
  • Teo, W.E., Ramakrishna, S., A review on electrospinning design and nanofibre assemblies (2006) Nanotechnology, 17, p. 89
  • Hong, J.K., Xu, G., Piao, D., Madihally, S.V., Analysis of void shape and size in the collector plate and polycaprolactone molecular weight on electrospun scaffold pore size (2013) J. Appl. Polym. Sci., 128, p. 1583
  • Wang, Y., Wang, G., Chen, L., Li, H., Yin, T., Wang, B., Lee, J.C., Yu, Q., Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds (2009) Biofabrication, 1, p. 1
  • Tong, H.W., Wang, M.J., Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications (2007) Nanosci. Nanotechnol., 7, p. 3834
  • Liu, Z., Li, X., Yang, Y., Zhang, K., Wang, X., Zhu, M., Hsiao, B.S., Control of structure and morphology of highly aligned PLLA ultrafine fibers via linear-jet electrospinning (2013) Polymer, 54, p. 6045
  • Nivison-Smith, L., Weiss, A.S., Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers (2012) J. Biomed. Mater. Res., A100, p. 155
  • Shalumon, K.T., Sathish, D., Nair, S.V., Chennazhi, K.P., Tamura, H., Jayakumar, R., Fabrication of aligned poly(lactic acid)-chitosan nanofibers by novel parallel blade collector method for skin tissue engineering (2012) J. Biomed. Nanotechnol., 8, p. 405
  • Teo, W.E., Kotaki, M., Mo, X.M., Ramakrishna, S., Porous tubular structures with controlled fibre orientation using a modified electrospinning method (2005) Nanotechnology, 16, p. 918
  • Wu, J., Huang, C., Liu, W., Yin, A., Chen, W., He, C., Wang, H., Mo, X., Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning (2013) J. Biomed. Nanotechnol., 10, p. 603
  • Sood, S., Divya, S., Gouma, P., High throughput electrospinning of 3D nano fibrous mats (2014) J. Nanoeng. Nanomanuf., 4, p. 39
  • Bazilevsky, A.V., Yarin, A.L., Megaridis, C.M., Coelectrospinning of core-shell fibers using a single-nozzle technique (2007) Langmuir, 23, p. 2311
  • Ji, X., Yang, W., Wang, T., Mao, C., Guo, L., Xiao, J., He, N., Coaxially electrospun core/shell structured poly(L-lactide) aacid/chitosan nanofibers for potential drug carrier in tissue engineering (2013) J. Biomed. Nanotechnol., 9, p. 1672
  • Viry, L., Moulton, S.E., Romeo, T., Suhr, C., Mawad, D., Cook, M., Gordon, W.G., Emulsion-coaxial electrospinning: Designing novel architectures for sustained release of highly soluble low molecular weight drugs (2012) J. Mater. Chem., 22, p. 11347
  • Yu, D.G., Zhou, J., Chatterton, N.P., Li, Y., Huang, J., Wang, X., Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process (2012) Int. J. Nanomed., 7, p. 5725
  • Nguyen, T.T.T., Ghosh, C., Hwang, S., Chanunpanich, N., Park, J.S., Porous Core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system (2012) Int. J. Pharm., 439, p. 296
  • Tijing, L.D., Ruelo, M.T.G., Amarjargal, A., Pant, H.R., Park, C., Kim, C.S., One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide))-polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning (2012) Mater. Chem. Phys., 134, p. 557
  • Toncheva, A., Paneva, D., Manolova, N., Rashkov, I., Mita, L., Crispi, S., Damiano, G.M., Dual versus single spinneret electrospinning for the preparation of dual drug containing non-woven fibrous materials (2013) Colloids Surface A, 439, p. 176
  • Lin, T., (2011) Nanofibers-Production, Properties and Functional Applications, , InTech, Rijeka, Croatia
  • Yarin, A.L., Zussman, E., Upward needleless electrospinning of multiple nanofibers (2004) Polymer, 45, p. 2977
  • He, J., Kong, H., Yang, R., Dou, H., Faraz, N., Wang, L., Feng, C., Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning (2012) Therm. Sci., 16, p. 1263
  • Tang, S., Zeng, Y., Wang, X., Splashing needleless electrospinning of nanofibers (2010) Polym. Eng. Sci., 50, p. 2252
  • Bhattacharyya, S., Nair, L.S., Singh, A., Krogman, N.R., Greish, Y.E., Brown, P.W., Allcock, H.R., Laurencin, C.T., Electrospinning of poly[bis(ethyl alanato)phosphazene]nanofibers (2006) J. Biomed. Nanotechnol., 2, p. 36
  • Bölgen, N., Menceloǧlu, Y.Z., Acatay, K., Vargel, I., Pişkin, E., Vitro and in vivo degradation of non-woven materials made of poly(ϵ-caprolactone) nanofibers prepared by electrospinning under different conditions (2005) J. Biomat. Sci. Polym. E, 16, p. 1537
  • Chowdhury, M., Stylios, G., Effect of experimental parameters on the morphology of electrospun nylon 6 fibres (2010) Int. J. Basic Appl. Sci., 10, p. 70
  • Zhang, D., Karki, A.B., Rutman, D., Young, D.P., Wang, A., Cocke, D., Ho, T.H., Guo, Z., Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3 O4 nanoparticles: Fabrication and property analysis (2009) Polymer, 50, p. 4189
  • Haghi, A.K., Hamrang, A., (2014) Foundations of High Performance Polymers: Properties, Performance and Applications, pp. 181-183. , edited by A. Hamrang and B. A. Howell, CRC Press Taylor & Francis Group, Oakville
  • Zhu, J., Wei, S., Chen, X., Karki, A.B., Rutman, D., Young, D.P., Guo, Z., Electrospun polyimide nanocomposite fibers reinforced with core-shell Fe-FeO nanoparticles (2010) J. Phys. Chem., C114, p. 8844
  • Rodoplu, D., Mutlu, M., Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces (2012) J. Eng. Fibers Fabr., 7, p. 118
  • Casper, C.L., Stephens, J.S., Tassi, N.G., Chase, D.B., Rabolt, J.F., Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process (2004) Macromolecules, 37, p. 573
  • Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A.S., Damerchely, R., The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber (2012) J. Eng. Fibers Fabr., 7, p. 42
  • Liu, F., Guo, R., Shen, M., Wang, S., Shi, X., Effect of processing variables on the morphology of electrospun poly[(lactic acid)-co-(glycolic acid)] nanofibers (2009) Macromol. Mater. Eng., 294, p. 666
  • Yao, S., Wang, X., Liu, X., Wang, R., Deng, C., Cui, F., Effects of ambient relative humidity and solvent properties on the electrospinning of pure hyaluronic acid nanofibers (2013) J. Nanosci. Nanotechnol., 13, p. 4752
  • De Vrieze, S., Van Camp, T., Nelvig, A., Hagstrom, B., Westbroek, P., De Clerck, K., The effect of temperature and humidity on electrospinning (2009) J. Mater. Sci., 44, p. 1357
  • Yan, N., Zhang, X., Cai, Q., Yang, X., Zhou, X., Wang, B., Deng, X., The effects of lactidyl/glycolidyl ratio and molecular weight of poly(D,L-lactide-co-glycolide) on the tetracycline entrapment and release kinetics of drug-loaded nanofibers (2012) J. Biomat. Sci., Polym. E, 23, p. 1005
  • Nasouri, K., Shoushtari, A.M., Kaflou, A., Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and berry number (2012) Micro Nano Lett., 7, p. 423
  • Nasefa, M.M., Abbasia, A., Faridi-Majidib, R., Takeshic, M., The effect of solution viscosity and concentration on morphological properties of electrospun nylon-6,6 nanofibers (2012) Conference on Emerging Energy and Process Technology, 1, pp. 1-2
  • Qian, Y.-F., Su, Y., Li, X.-Q., Wang, H.-S., He, C.-L., Electrospinning of polymethyl methacrylate nanofibres in different solvents (2010) Iran. Polym J., 19, p. 123
  • Cengiz-Çalloǧlu, F., Jirsak, O., Dayik, M., The influence of non-solvent addition on the independent and dependent parameters in roller electrospinning of polyurethane (2013) J. Nanosci. Nanotechnol., 13, p. 4727
  • Qi, Z., Yu, H., Chen, Y., Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(L-lactic acid) (2009) Mater. Lett., 63, p. 415
  • Ji, X., Wang, T., Guo, L., Xiao, J., Li, Z., Zhang, L., Deng, Y., He, N., Effect of nanoscale-ZnO on the mechanical property and biocompatibility of electrospun poly(L-lactide) acid/nanoscale-ZnO mats (2013) J. Biomed. Nanotechnol., 9, p. 417
  • Nirmala, R., Kalpana, D., Navamathavan, R., Lee, Y.S., Kim, H.Y., Preparation and characterizations of silver incorporated polyurethane composite nanofibers via electrospinning for biomedical (2013) J. Nanosci. Nanotechnol., 13, p. 4686
  • Jiu, L., Qin, X.-H., The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers (2013) J. of Therm Anal Calorim., 112, p. 595
  • Pierschbacher, M.D., Ruoslahti, E., Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule (1984) Nature, 309, p. 30
  • Kim, H.-W., (2012) Handbook of Intelligent Scaffold for Tissue Engineering and Regenerative Medicine, pp. 273-287. , edited by G. Khang, Pan Stanford Publishing Pte Ltd Singapore Chap. 14
  • Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Balasubramanian, P., Jin, G., Valipouri, A., Ramakrishna, S., Advances in electrospun nanofibers for bone and cartilage regeneration (2013) J. Nanosci. Nanotechnol., 13, p. 4656
  • Shapiro, J.A., Thinking about bacterial populations as multicellular organisms (1998) Annu. Rev. Microbiol., 52, p. 81
  • Davies, D., Understanding biofilm resistance to antibacterial agents (2003) Nature Rev. Drug Discov., 2, p. 114
  • Xu, L.C., Siedlecki, C.A., Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation (2012) Acta Biomater, 8, p. 72
  • Van Tienen, T.G., Heijkants, R.G., Buma, P., De Groot, J.H., Pennings, A.J., Veth, R.P., Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes (2002) Biomaterials, 23, p. 1731
  • Lee, J.M., Sheikh, F.A., Ki, C.S., Ju, H.W., Lee, O.J., Moon, B.M., Park, H.J., Park, C.H., Facile pore structure control of poly(ϵ-caprolactone) nano-fibrous scaffold by salt-dispenser aided electrospinning (2013) J. Nanoeng. Nanomanuf., 3, p. 269
  • Stankus, J.J., Soletti, L., Fujimoto, K., Hong, Y., Vorp, D.A., Wagner, W.R., Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization (2007) Biomaterials, 28, p. 2738
  • Jayasinghe, S.N., Warnes, G., Scotton, C.J., Bio-electrosprayed living composite matrix implanted into mouse models (2011) Macromol. Biosci, 11, p. 1364
  • Leong, M.F., Rasheed, M.Z., Limand, T.C., Chian, K.S., Vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique (2009) J. Biomed. Mater. Res. A, 91, p. 231
  • Baker, B.M., Gee, A.O., Metter, R.B., Nathan, A.S., Marklein, R.A., Burdick, J.A., The, R.L., Mauck. Potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers (2008) Biomaterials, 29, p. 2348
  • Phipps, M.C., Clem, W.C., Grunda, J.M., Clines, G.A., Bellis, S.L., Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration (2012) Biomaterials, 33, p. 524
  • Wang, K., Xu, M., Zhu, M., Su, H., Wang, H., Kong, D., Wang, L., Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration (2013) J. Biomed. L Mater. Res., A101, p. 3474
  • Calderini, G., Valle, F.D., Rastrelli, A., Romeo, A., (1997) Biocompatible Perforated Membranes, Processes for Their Preparation, Their Use as a Support in the in Vitro Growth of Epithelial Cells, the Artificial Skin Obtained in this Manner, and Its Use in Skin Grafts
  • Lee, B.L., Jeon, H., Wang, A., Yan, Z., Yu, J., Grigoropoulos, C., Li, S., Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds (2012) Acta Biomater, 8, p. 2648
  • Fatehi, F., Natural scaffold materials used in regenerative endodontic: A review (2013) J. Biomater. Tissue Eng, 3, p. 597
  • Lou, T., Leung, M., Wang, X., Chang, J.Y.F., Tsao, C.T., Sham, J.G.C., Edmondson, D., Zhang, M., Bi-layer scaffold of chitosan/PCL-nanofibrous Mat and PLLA-microporous disc for skin tissue engineering (2014) J. Biomed. Nanotechnol., 10, p. 1105
  • Ruckh, T.T., Carroll, D.A., Weaver, J.R., Popat, K.C., Mineralization content alters osteogenic responses of bone marrow stromal cells on hydroxyapatite/polycaprolactone composite nanofiber scaffolds (2012) J. Funct. Biomater., 3, p. 776
  • Jin, L., Wang, T., Zhu, M.L., Leach, M.K., Naim, Y.I., Corey, J.M., Feng, Z.Q., Electrospun fibers and tissue engineering (2012) J. Biomed. Nanotechnol., 8, p. 1
  • Chiu, J.B., Luu, Y.K., Fang, D., Hsiao, B.S., Chu, B., Hadjiargyrou, M., Electrospun nanofibrous scaffolds for biomedical applications (2005) J. Biomed. Nanotechnol, 1, p. 115
  • Seidi, A., Sampathkumar, K., Srivastava, A., Ramakrishna, S., Ramalingam, M., Gradient nanofiber scaffolds for tissue engineering (2013) J. Nanosci. and Nanotechnol., 13, p. 4647
  • Beachley, V., Serpe, A., Hepfer, R.G., Wen, X., Surface functionalization of electrospun polyurethane scaffolds using blended polymer solutions (2013) J. Biomater. Tissue Eng., 3, p. 472
  • He, X., Fu, W., Feng, B., Wang, H., Liu, Z., Yin, M., Wang, W., Zheng, J., Electrospun collagen/poly(L-lactic acid-co-ϵcaprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering (2013) J. Nanosci. Nanotechnol, 13, p. 3818
  • Chen, M., Patra, P.K., Lovett, M.L., Kaplan, D.L., Bhowmick, S., Role of electrospun fiber diameter and corresponding specific surface area (SSA) on cell attachment (2009) J. Tissue Eng. Regen. Med., 3, p. 269
  • Lord, M.S., Foss, M., Besenbacher, F., Influence of nanoscale surface topography on protein adsorption and cellular response (2010) Nano Today, 5, p. 66
  • Miller, D.C., Haberstroh, K.M., Webster, T.J., Mechanism of increased vascular cell adhesion on nanostructured Poly(lactic-coglycolic acid) films (2005) J. Biomed. Mater. Res. A, 73 A, p. 476
  • Cousins, B.G., Doherty, P.J., Williams, R.L., Fink, J., Garvey, M.J., The effect of silica nanoparticulate coatings on cellular response (2004) J. Mater. Sci. -Mater. M, 15, p. 355
  • Rice, J.M., Hunt, J.A., Gallagher, J.A., Hanarp, P., Sutherland, D.S., Gold, J., Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro (2003) Biomaterials, 24, p. 4799
  • Fan, Y.W., Cui, F.Z., Hou, S.P., Xu, Q.Y., Chen, L.N., Lee, I.S., Culture of neural cells on silicon wafers with nano-scale surface topograph (2002) J. Neurosci. Meth., 120, p. 17
  • Buttiglieri, S., Pasqui, D., Migliori, M., Johnstone, H., Affrossman, S., Sereni, L., Wratten, M.L., Camussi, G., Endothelization and adherence of leucocytes to nanostructured surfaces (2003) Biomaterials, 24, p. 2731
  • Doustgani, A., Vheghani-Farahani, E., Soleimani, M., Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering (2013) Nanomed. J., 1, p. 20
  • Nien, Y.H., Wang, J.Y., Tsai, Y.S., The preparation and characterization of highly aligned poly(ϵ-caprolactone)/poly ethylene oxide/chitosan ultrafine fiber for the application to tissue scaffold (2013) J. Nanosci. Nanotechnol., 13, p. 4703
  • Guan, J., Fujimoto, K.L., Sacks, M.S., Wagner, W.R., Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications (2005) Biomaterials, 26, p. 3961
  • Yazdimamaghani, M., Vashaee, D., Assefa, S., Walker, K.J., Madihally, S.V., Köhler, G.A., Tayebi, L., Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering (2014) J. Biomed Nanotechnol., 10, p. 911
  • Wu, J., Huang, C., Yin, A., Chen, W., He, C., Wang, H., Liu, S., Mo, X., Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning (2013) J. Biomed. Nanotechnol., 10, p. 603
  • Gray, H., (2000) Anatomy of the Human Body, 1918. , Lea & Febiger, Philadelphia
  • Rho, J.Y., Kuhn-Spearing, L., Zioupos, P., Mechanical properties and the hierarchical structure of bone (1998) Med. Eng. Phys., 20, p. 92
  • Steffens, D., Lersch, M., Rosa, A., Scher, C., Crestani, T., Morais, M.G., Costa, J.A.V., Pranke, P., A new biomaterial of nanofibers with the microalga spirulina as scaffolds to cultivate with stem cells for use in tissue engineering (2012) J. Biomed. Nanotechnol., 9, p. 710
  • Wang, X., Ding, B., Li, B., Biomimetic electrospun nanofibrous structures for tissue engineering (2013) Mater. Today, 16, p. 229
  • Polo-Corrales, L., Latorre-Esteves, M., Ramirez-Vick, J.E., Scaffold design for bone regeneration (2014) J. Nanosci. Nanotechnol., 14, p. 15
  • Mkhabela, V.J., Ray, S.S., Poly(ϵ-caprolactone) nanocomposite scaffolds for tissue engineering: A brief overview (2014) J. Nanosci. Nanotechnol., 14, p. 535
  • Yazdimamaghani, M., Vashaee, D., Assefa, S., Walker, K.J., Madihally, S.V., Köhler, G.A., Tayebi, L., Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering (2014) J. Biomed Nanotechnol., 10, p. 911
  • Friess, W., Collagen biomaterial for drug delivery (1998) Eur. J. Pharm. Biopharm., 45, p. 113
  • Teng, S.H., Lee, E.J., Wang, P., Kim, H.E., Collagen/hydroxyapatite composite nanofibers by electrospinning (2008) Matter. Lett., 62, p. 3055
  • Jo, J.H., Lee, E.J., Shin, D.S., Kim, H.E., Kim, H.W., Koh, Y.H., Jang, J.H., Vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(ϵ-caprolactone) composite materials (2009) J. Biomed. Mater. Res. B, 91 B, p. 213
  • Datta, P., Gosh, P., Gosh, K., Maity, P., Samanta, S.K., Gosh, S.K., Mahapatra, P.K.D., Dhara, S., Vitro ALP and osteocalcin gene expression analysis and in vivo biocompatibility of N -methylene posphonic chitosan nanofiber for bone regeneration (2012) J. Biomed. Nanotechnol., 9, p. 870
  • Venugopal, J., Prabhakaran, M.P., Zhang, Y., Low, S., Choon, A.T., Ramakrishna, S., Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering (2010) Phil. Trans. R. Soc., 368, p. 2065
  • Suganya, S., Venugopal, J., Ramakrishna, S., Lakshmi, B.S., Dev, V.R.G., Aloe vera/silk fibroin/hydroxyapatite incorporated electrospun nanofibrous scaffold for enhanced osteogenesis (2014) J. Biomater. Tissue Eng., 4, p. 9
  • Shalumon, K.T., Sowmya, S., Sathish, D., Chennazhi, K.P., Nair, S.V., Jayakumar, R., Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering (2013) J. Biomed. Nanotechnol., 9, p. 430
  • Nelson, C., Magge, A., Bernard, T.S.T., Khan, Y., Laurencin, C.T., Nanostructured composites for bone repair (2013) J. Biomater. Tissue Eng., 3, p. 426
  • Zong, C., Qian, X., Tang, Z., Hu, Q., Chen, J., Gao, C., Tang, R., Wang, J., Biocompatibility and bone-repairing effects: Comparison between porous poly-lactic-co-glycolic acid and nanohydroxyapatite/poly(lactic acid) scaffolds (2014) J. Biomed Nanotechnol., 10, p. 1091
  • Ito, Y., Hasudaa, H., Kamitakahara, M., Ohtsuki, C., Tanihara, M., Kang, I.K., Kwon, O.H., A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material (2005) J. Biosci. Bioeng., 100, p. 43
  • Sreerekha, P.R., Menon, D., Nair, S.V., Chennazhi, K.P., Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications (2012) J. Biomed. Nanotechnol., 9, p. 790
  • Yoshimoto, H., Shina, Y.M., Teraia, H., Vacantia, J.P., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering (2003) Biomaterials, 24, p. 2077
  • Shin, M., Yoshimoto, H., Vacanti, J.P., Vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold (2004) Tissue Eng, 10, p. 33
  • Costa-Pinto, A.R., Reis, R.L., Neves, N.M., Scaffolds based bone tissue engineering: The role of chitosan (2011) Tissue Eng, 17, p. 331
  • Sun, K., Li, Z.H., Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering (2011) Express Polym. Lett., 5, p. 342
  • Thien, D.V.H., Hsiao, S.W., Ho, M.H., Li, C.H., Shih, J.L., Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering (2013) J. Mater. Sci., 48, p. 1640
  • Zhang, J.G., Mo, X.M., Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers (2013) Front. Mater. Sci., 7, p. 129
  • Mina, B.M., Leea, G., Kimb, S.H., Namb, Y.S., Leeb, T.S., Parkb, W.H., Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro (2004) Biomaterials, 25, p. 1289
  • Alessandrino, A., Marelli, B., Arosio, C., Fare, S., Tanzi, M.C., Freddi, G., Electrospun silk fibroin mats for tissue engineering (2008) Eng. Life Sci., 8, p. 219
  • Jin, H.J., Chen, J., Karageorgiou, V., Altman, G.H., Kaplan, D.L., Human bone marrow stromal cell responses on electrospun silk fibroin mats (2004) Biomaterials, 25, p. 1039
  • Meinel, A.J., Kubow, K.E., Klotzsch, E., Garcia-Fuentes, M., Smith, M.L., Vogel, V., Merkle, H.P., Meinel, L., Optimization strategies for electrospun silk fibroin tissue engineering scaffolds (2009) Biomaterials, 30, p. 3058
  • Tsioptsias, C., Sakellariou, K.G., Tsivintzelis, I., Papadopoulou, L., Panayiotou, C., Preparation and characterization of cellulose acetate-Fe 2 O 3 composite nanofibrous materials (2010) Carbohyd. Polym., 81, p. 925
  • Frey, M.W., Electrospinning cellulose and cellulose derivatives (2008) Polym. Rev., 48, p. 378
  • Zhou, C., Shi, Q., Guo, W., Terrell, L., Qureshi, A.T., Hayes, D.J., Wu, Q., Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA (2013) Appl. Mater. Interfaces, 5, p. 3847
  • Chahal, S., Shahitha, F., Hussain, J., Yusoff, M.M., Characterization of modified cellulose (MC)/poly(vinyl alcohol) electrospun nanofibers for bone tissue engineering (2013) Procedia Eng, 53, p. 683
  • Binulal, N.S., Natarajan, A., Menon, D., Bhaskaran, V.K., Mony, U., Nair, S.V., PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering (2013) J. Biomater. Sci., 25, p. 325
  • Liu, Y., Luo, D., Liu, S., Fu, Y., Kou, X., Wang, X., Sha, Y., Zhou, Y., Effect of nanostructure of mineralized collagen scaffolds on their physical properties and osteogenic potential (2014) J. Biomed. Nanotechnol., 10, p. 1049
  • Elias, C.N., Lima, J.H.C., Valiev, R., Meyers, M.A., Biomedical applications of titanium and its alloys (2008) JOM, 60, p. 46
  • Niinomi, M., Recent research and development in titanium alloys for biomedical applications and healthcare goods (2003) Sci. Technol. Adv. Mat., 4, p. 445
  • Liu, X., Chu, P.K., Ding, C., Surface modification of titanium, titanium alloys, and related (2004) Mater. Sci. Eng. R, 47, p. 49. , materials for biomedical applications
  • Santhosh, S., Prabu, S.B., Nanohidroxyapatitepolysulfone coating on Ti-6AI-4V substrate by electrospinning (2013) Int. J. Mater. Res., 104, p. 1254
  • Iafisco, M., Quirici, N., Foltran, I., Rimondini, L., Collagen mimicking the reconstituted extracellular matrix improves osteoblastic differentiation onto titanium surfaces (2013) J. Nanosci. Nanotechnol., 13, p. 4720
  • Mendonça, G., Mendonça, D.B.S., Aragaõ, F.J.L., Cooper, L.F., Advancing dental implant surface technology-from micro to nanotopography (2008) Biomaterials, 29, p. 3822
  • Kelm, J., Regitz, T., Schmitt, E., Jung, W., Anagnostakos, K., Vivo and in vitro studies of antibiotic release from and bacterial growth inhibition by antibiotic-impregnated polymethylmethacrylate hip spacers (2006) Antimicrobial Agents and Chemotherapy, 50, p. 332
  • Insall, J.N., Thompson, F.M., Brause, B.D., Two-stage reimplantation for the salvage of infected total knee arthroplasty (1983) J. Bone Joint Surg. Am., 65, p. 1087
  • Haddad, F.S., Masri, B.A., Campbell, D., McGraw, R.W., Beauchamp, C.P., Duncan, C.P., The PROSTALAC functional spacer in two-stage revision for infected knee replacements (2000) J. Bone Joint Surg., 82, p. 807
  • Hsieh, P.H., Shih, C.H., Chang, Y.H., Lee, M.S., Shih, H.N., Yang, W.E., Two-stage revision hip arthroplasty for infection: Comparison between the interim use of antibiotic-loaded cement beads and a spacer prosthesis (2004) J. Bone Joint Surg. Am., 86, p. 1989
  • Yamamoto, K., Miyagawa, N., Masaoka, T., Katori, Y., Shishido, T., Imakiire, A., Cement spacer loaded with antibiotics for infected implants of the hip joint (2009) J. Arthroplasty, 24, p. 83
  • Li, L.L., Wang, L.M., Xu, Y., Lv, L.X., Preparation of gentamicin-loaded electrospun coating on titanium implants and a sudy of their properties in vitro (2012) Arch. Orthop. Trauma Surg., 132, p. 897
  • Rossi, C.A., Flaibani, M., Blaauw, B., Pozzobon, M., Figallo, E., Reggiani, C., Vitiello, L., De Coppi, P., Vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel (2011) FASEB J, 25, p. 2296
  • Ayele, T., Zuki, A.B.Z., Noordin, M.M., Noorjahan, B.M.A., Engineering of skeletal muscle tissue using myoblast-seeded bovine pericardium for reconstruction of abdominal wall defect in a rabbit model (2010) J. Biomimetics, Biomater. Tissue Eng., 8, p. 9
  • McLaughlin, S.W., Nelson, S.J., McLaughlin, W.M., Nair, L.S., Laurencin, C.T., Design of nanofibrous scaffolds for skeletal muscle regenerative engineering (2013) J. Biomater. Tissue Eng., 3, p. 385
  • Allen, R.E., Boxhorn, L.K., Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor (1989) J. Cell Physiol., 138, p. 311
  • Allen, R.E., Boxhorn, L.K., Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta (1987) J. Cell Physiol., 133, p. 567
  • Sirivisoot, S., Harrison, B.S., Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. International (2011) J. Nanomed., 6, p. 2483
  • Gabella, G., (1997) Cellular Aspects of Smooth Muscle Function, pp. 1-48. , edited by C. Y. Kao and M. E. Carsten, Cambridge University Press, Cambridge Chap. 1
  • Obregón, R., Ramón-Azcón, J., Ahadian, S., Shiku, H., Bae, H., Ramalingam, M., Matsue, T., The use of microtechnology and nanotechnology in fabricating vascularized tissues (2014) J. Nanosci. Nanotechnol., 14, p. 487
  • Patra, S., Remy, M., Ray, A.R., Brouillaud, B., Amedee, J., Gupta, B., Bordenave, L., A novel route to polycaprolactone scaffold for vascular tissue (2013) J. Biomater. Tissue Eng., 3, p. 289
  • Rogers, L., Said, S.S., Mequanint, K., The effects of fabrication strategies on 3D scaffold morphology, porosity, and vascular smooth muscle cell response (2013) J. Biomater. Tissue Eng., 3, p. 300
  • Huu, A.L., Paul, A., Xu, L., Prakash, S., Shum-Tim, D., Recent advancements in tissue engineering for stem cell-based cardiac therapies (2013) Ther. Deliv., 4, p. 503
  • Ahvaz, H.H., Mobasheri, H., Bakhshandeh, B., Shakhssalim, N., Naji, M., Dodel, M., Soleimani, M., Mechanical characteristics of electrospun aligned PCL/PLLA nanofibrous scaffolds conduct cell differentiation in human bladder tissue engineering (2013) J. Nanosci. Nanotechnol., 13, p. 4736
  • Xu, C.Y., Inai, R., Kotaki, M., Ramakrishna, S., Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering (2004) Biomaterials, 25, p. 877
  • Stankus, J.J., Guan, J., Fujimoto, K., Wagner, W.R., Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix (2006) Biomaterials, 27, p. 735
  • Lee, C.H., Lim, Y.C., Farson, D.F., Powell, H.M., Lannutti, J.J., Vascular wall engineering via femtosecond laser ablation: Scaffolds with self-containing smooth muscle cell populations (2011) Ann. Biomed. Eng., 39, p. 3031
  • Dowell, J.D., Rubart, M., Pasumarthi, K.B.S., Soonpaa, M.H., Field, L.J., Myocyte and myogenic stem cell transplantation in the heart (2003) Cardiovas. Res., 58, p. 336
  • Templin, C., Lüscher, T.F., Landmesser, U., Cell-based cardiovascular repair and regeneration in acute myocardial infarction and chronic ischemic cardiomyopathy-current status and future developments (2011) Int. J. Dev. Biol., 55, p. 407
  • Forrester, J.S., White, A.J., Matsushita, S., Chakravarty, T., Makkar, R.R., New paradigms of myocardial regeneration postinfarction: Tissue preservation, cell environment, and pluripotent cell sources (2009) JACC Cardiovasc. Interv., 2, p. 1
  • Orlic, D., Hill, J.M., Arai, A.E., Stem cells for myocardial regeneration (2002) Circ Res, 91, p. 1092
  • Hussain, A., Collins, G., Yip, D., Cho, C.H., Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds (2013) Biotechnol. Bioeng, 110, p. 637
  • Kai, D., Prabhakaran, M.P., Jin, G., Ramakrishna, S., Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering (2011) J. Biomed. Mater. Res. B, 98 B, p. 379
  • Kai, D., Prabhakaran, M.P., Jin, G., Ramakrishna, S., Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering (2011) J. Biomed. Mater. Res. A, 99 A, p. 376
  • Balguid, A., Mol, A., Van Marion, M.H., Bank, R.A., Bouten, C.V.C., Baaijens, F.P.T., Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering (2009) Tissue Eng. A, 15, p. 437
  • Reverchon, E., Baldino, L., Cardea, S., De Marco, I., Biodegradable synthetic scaffolds for tendon regeneration (2012) Muscles Ligaments Tendons J, 2, p. 181
  • Bosworth, L.A., Alam, N., Wong, J.K., Downes, S., Investigation of 2D and 3D electrospun scaffolds intended for tendon repair (2013) J. Mater Sci. Mater Med., 24, p. 1605
  • Lee, K.L., Ngai, G.A., Varghese, S.C., Duan, L., Cooper, J.A., Nanostructures for ligament and tendon regeneration (2013) J. Biomater. Tissue Eng., 3, p. 409
  • Chainani, A., Hippensteel, K.J., Kishan, A., Garrigues, N.W., Ruch, D.S., Guilak, F., Little, D., Multilayered electrospun scaffolds for tendon tissue engineering (2013) Tissue Eng A, 19, p. 2594
  • Schmidt, C.E., Leach, J.B., Neural tissue engineering: Strategies for repair and regeneration (2003) Annu. Rev. Biomed., 5, p. 293
  • Berriman, L., (2008) Fundamentals of Anatomy and Physiology, Pearson Benjamin Cummings, , San Francisco, CA
  • Jacobsen, S., Guth, L., An electrophysiological study of the early stages of peripheral nerve regeneration (1965) Exp. Neurol., 11, p. 48
  • Timnak, A., Gharebaghi, F.Y., Shariati, R.P., Bahrami, S.H., Javadian, S., Emami, S.H., Shokrgozar, M.A., Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering (2011) J. Mater. Sci. Mater. Med., 22, p. 1555
  • Xu, J., Shawnh, L., Hai-Quan, M., Singyian, C., Current applications and future perspectives of artificial nerve conduits (2010) Exp. Neurol., 223, p. 86
  • Ide, C., Peripheral nerve regeneration (1996) Neurosci. Res., 25, p. 101
  • Chew, S.Y., Mi, R., Hoke, A., Leong, K.W., Aligned proteinpolymer composite fibers enhance nerve regeneration: A potential tissue-engineering platform (2007) Adv. Funct. Mater., 17, p. 1288
  • Griffin, J., Delgado-Rivera, R., Meiners, S., Uhrich, K.E., Salicylic acid-derived poly(anhydride-ester) electrospun fibers designed for regenerating the peripheral nervous system (2011) J. Biomed. Mater. Res. A, 97, p. 230
  • Kim, Y.T., Haftel, V.K., Kumar, S., Bellamkonda, R.V., The role of aligned polymer fiber-based constructs in the bridging long peripheral nerve gaps (2008) Biomaterials, 9, p. 3117
  • Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M., Ramakrishna, S., Electrospun poly(ϵ-caprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering (2008) Biomaterials, 29, p. 4532
  • Wang, H.B., Mullins, M.E., Cregg, J.M., Hurtado, A., Oudega, M., Trombley, M.T., Gilbert, R.J., Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications (2009) J. Neural. Eng., 6, p. 1
  • McDonald, J.W., Howard, M.J., Spinal cord trauma: Regeneration, neural repair and functional recovery (2002) Prog. Brain Res., 137, p. 299
  • Popovich, P.G., Wei, P., Stokes, B.T., Cellular inflammatory response after spinal cord injury in sprague-dawley and lewis rats (1997) J. Comp. Neurol., 377, p. 443
  • Beck, K.D., Nguyen, H.X., Galvan, M.D., Salazar, D.L., Woodruff, T.M., Anderson, A.J., Quantitative analysis of cellular inflammation after traumatic spinal cord injury: Evidence for a multiphasic inflammatory response in the acute to chronic environment (2010) Brain, 133, p. 433
  • Liu, T., Houle, J.D., Xu, J., Chan, B.P., Chew, S.Y., Nanofibrous collagen nerve conduits for spinal cord repair (2012) Tissue Eng. Part A, 18, p. 1057
  • Chow, W.N., Simpson, D.G., Bigbee, J.W., Colello, R.J., Evaluating neuronal and glial growth on electrospun polarized matrices: Bridging the gap in percussive spinal cord injuries (2007) Neuron Glia Biol, 3, p. 119
  • Eriksen, T.H., Skovsen, E., Fojan, P., Release of antimicrobial peptides from electrospun nanofibres as a drug delivery system (2013) J. Biomed. Nanotechnol., 9, p. 492
  • Lissarrague, M.H., Garate, H., Lamanna, M.E., D'Accorso, N.B., Goyanes, S.N., (2013) Medicinal Patches and Drug Nanoencapsulation: A Noninvasi Alternative Nanomedicine for Drug Delivery and Therapeutics Related, pp. 343-378. , edited by A. K. Mishra, Wiley-Scrivener, Beverly Chap. 12
  • Zilberman, M., Elsner, J.J., Antibiotic-eluting medical devices for various applications (2008) J. Control Release, 130, p. 202
  • Vorndran, E., Spohn, N., Nies, B., Röler, S., Storch, S., Gbureck, U., Mechanical properties and drug release behavior of bioactivated PMMA cements (2012) J. Biomater. Appl., 26, p. 581
  • Fong, E.L.S., Watson, B.M., Kasper, F.K., Mikos, A.G., Building bridges: Leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs (2012) Adv. Mater., 24, p. 4995
  • Brouwers, J., Brewster, M.E., Augustijns, P., Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? J (2009) Pharm. Sci, 98, p. 2549
  • Singh, A., Worku, Z.A., Van Den Mooter, G., Oral formulation strategies to improve solubility of poorly water-soluble drugs (2011) Expert Opin. Drug Deliv., 8, p. 1361
  • Yu, D.G., Branford-White, C., White, K., Li, X.L., Zhu, L.M., Dissolution improvement of electrospun nanofiber-based solid dispersions for acetaminophen (2010) AAPS PharmSciTech, 11, p. 809
  • Lin, X., Tang, D., Du, H., Self-assembly and controlled release behaviour of the water-insoluble drug nifedipine from electrospun PCL-based polyurethane nanofibres (2013) J. Pharm. Pharmacol., 65, p. 673
  • Reise, M., Wyrwa, R., Müller, U., Zylinski, M., Völpel, A., Schnabelrauch, M., Berg, A., Sigusch, B.W., Release of metronidazole from electrospun poly(llactide-co-d/l-lactide) fibers for local periodontitis treatment (2012) Dent. Mater., 28, p. 179
  • Park, J., Lee, I., Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers (2011) J. Polym. Res., 18, p. 1287
  • Bölgen, N., Vargel, I., Korkusuz, P., Menceloǧlu, Y.Z., Pişkin, E., Vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions (2007) J. Biomed. Mater. Res., 81, p. 530
  • Natu, M.V., De Sousa, H.C., Gil, M.H., Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers (2010) Int. J. Pharm., 397, p. 50
  • Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes (2002) Polymer, 43, p. 4403
  • Luong-Van, E., Grondahl, L., Chua, K.N., Leong, K.W., Nurcombe, V., Cool, S.M., Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers (2006) Biomaterials, 27, p. 2042
  • Kim, K., Luu, Y.K., Chang, C., Fang, D., Hsiao, B.S., Chu, B., Hadjiargyrouc, M., Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds (2004) J. Control Release, 98, p. 47
  • Nie, H., Soh, B.W., Fu, Y.C., Wang, C.H., Threedimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery (2008) Biotechnol. Bioeng., 99, p. 223
  • Schneider, A., Wang, X.Y., Kaplan, D.L., Garlick, J.A., Egles, C., Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing (2009) Acta Biomater, 5, p. 2570
  • Tian, L., Prabhakaran, M.P., Ding, X., Kai, D., Ramakrishna, S., Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-ϵ-caprolactone) nanofibers for sustained release in cardiac tissue engineering (2012) J. Mater. Sci., 47, p. 3272
  • Sohrabi, A., Shaibani, P.M., Etayash, H., Kaur, K., Thundat, T., Sustained drug release and antibacterial activity of ampicillin incorporated poly(methyl methacrylate)-nylon6 core/shell nanofibers (2013) Polymer, 54, p. 2699
  • Huang, Z.M., He, C.L., Yang, A., Zhang, Y., Han, X.J., Yin, J., Wu, Q., Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning (2006) J. Biomed. Mater. Res., 77, p. 169

Citas:

---------- APA ----------
Ribba, L., Parisi, M., D'Accorso, N.B. & Goyanes, S. (2014) . Electrospun nanofibrous mats: From vascular repair to osteointegration. Journal of Biomedical Nanotechnology, 10(12), 3508-3535.
http://dx.doi.org/10.1166/jbn.2014.2046
---------- CHICAGO ----------
Ribba, L., Parisi, M., D'Accorso, N.B., Goyanes, S. "Electrospun nanofibrous mats: From vascular repair to osteointegration" . Journal of Biomedical Nanotechnology 10, no. 12 (2014) : 3508-3535.
http://dx.doi.org/10.1166/jbn.2014.2046
---------- MLA ----------
Ribba, L., Parisi, M., D'Accorso, N.B., Goyanes, S. "Electrospun nanofibrous mats: From vascular repair to osteointegration" . Journal of Biomedical Nanotechnology, vol. 10, no. 12, 2014, pp. 3508-3535.
http://dx.doi.org/10.1166/jbn.2014.2046
---------- VANCOUVER ----------
Ribba, L., Parisi, M., D'Accorso, N.B., Goyanes, S. Electrospun nanofibrous mats: From vascular repair to osteointegration. J. Biomed. Nanotechnol. 2014;10(12):3508-3535.
http://dx.doi.org/10.1166/jbn.2014.2046