Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It is shown that the anapolar interaction of the electrons of a molecule with an external uniform magnetic field B and a uniform curl C = × B′ determines different thermodynamic stabilization of the ground state for the enantiomers and diastereoisomers of a chiral molecule. A series of potential candidates for enantioselective syntheses have been investigated in a computational study via SCF-HF, B3LYP, and various coupled cluster approaches to determine the difference in energy between different enantiomers and diastereoisomers. The calculations show that these differences are very small for B and C presently available but approximately 3 orders of magnitude larger than those determined by parity violation effects. The chances that enantioselective synthesis may be attempted in the future are discussed. Recognition of anapolar interaction in chiral molecules via measurements of an induced magnetic dipole moment in the ordered phase may become possible in the presence of a nonuniform magnetic field with a strong gradient. © 2019 American Chemical Society.

Registro:

Documento: Artículo
Título:Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study
Autor:Pagola, G.I.; Ferraro, M.B.; Provasi, P.F.; Pelloni, S.; Lazzeretti, P.
Filiación:Departamento de Fĺsica, Facultad de Ciencias Exactas y Naturales, IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. i, Buenos Aires, 1428, Argentina
Department of Physics-IMIT, Northeastern University, CONICET, Corrientes, Argentina
Istituto d'Istruzione Superiore Francesco Selmi, via Leonardo da Vinci 300, Modena, 41126, Italy
Istituto di Struttura della Materia, Consiglio Nazionale Delle Ricerche, Via del Fosso del Cavaliere 100, Roma, 00133, Italy
Año:2019
DOI: http://dx.doi.org/10.1021/acs.jctc.8b01002
Título revista:Journal of Chemical Theory and Computation
Título revista abreviado:J. Chem. Theory Comput.
ISSN:15499618
CODEN:JCTCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v_n_p_Pagola

Referencias:

  • Faraday, M., XLIX. Experimental Researches in Electricity. Nineteenth Series (1846) London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 28, pp. 294-317
  • Pasteur, L., La Dissymétrie Moleculaire (1884) Rev. Sci., 7, pp. 2-6
  • Faraday, M., (1933) Faraday's Diary of Experimental Investigation, 4. , http://faradaysdiary.com/ws3/faraday.pdf, 1 st ed. George Bell and Sons, Ltd. London, November 12, 1839-June 26, 1847; see also
  • (1904) Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, , Lord Kelvin. C. J. Clay and Sons: London, footnote on page 619
  • Barron, L.D., (2004) Molecular Light Scattering and Optical Activity, , 2 nd ed. Cambridge University Press: Cambridge, U.K
  • Wagnière, G.H., (2007) On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image, , 1 st ed. Wiley-VCH
  • Curie, P., (1894) Sur la Symétrie dans les Phénomènes Physiques - Symétrie d'Un Champ Èlectrique et d'Un Champ Magnètique, , http://gallica.bnf.fr/ark:/12148/bpt6k2282p/f139.image.pagination.r/journal=de=physique=1894.langEN, J. de Physique, 3e série, t. III, 393 (); reprinted in "Oeuvres de Pierre Curie" Gauthier-Villars, Paris, IX Conclusions, pp 113-141 (1908), Gordon and Breach Science Publishers S. A. (1984)
  • Lazzeretti, P., Chiral Discrimination in Nuclear Magnetic Resonance Spectroscopy (2017) J. Phys.: Condens. Matter, 29, p. 443001
  • Zadel, G., Eisenbraun, C., Wolff, G.-J., Breitmaier, E., Enantioselective Reactions in a Static Magnetic Field (1994) Angew. Chem., Int. Ed. Engl., 33, pp. 454-456
  • Feringa, B.L., Kellogg, R.M., Hulst, R., Zondervan, C., Kruizinga, W.H., Attempts to Carry out Enantioselective Reactions in a Static Magnetic Field (1994) Angew. Chem., Int. Ed. Engl., 33, pp. 1458-1459
  • Kaupp, G., Marquardt, T., Absolute Asymmetric Synthesis Solely under the Influence of a Static Homogeneous Magnetic Field? (1994) Angew. Chem., Int. Ed. Engl., 33, pp. 1459-1461
  • Feringa, B.L., Van Delden, R.A., Absolute Asymmetric Synthesis: The Origin, Control, and Amplification of Chirality (1999) Angew. Chem., Int. Ed., 38, pp. 3418-3438
  • Gölitz, P., Enantioselective Reactions in a Static Magnetic Field-A False Alarm! (1994) Angew. Chem., Int. Ed. Engl., 33, p. 1457
  • Lazzeretti, P., Magnetic Properties of a Molecule in Non-Uniform Magnetic Field (1993) Theor. Chim. Acta, 87, pp. 59-73
  • Faglioni, F., Ligabue, A., Pelloni, S., Soncini, A., Lazzeretti, P., Molecular Response to a Time-independent Non-uniform Magnetic Field (2004) Chem. Phys., 304, pp. 289-299
  • Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Magnetizabilities of Diatomic and Linear Triatomic Molecules in a Time-Independent Nonuniform Magnetic Field (2014) J. Phys. Chem. A, 118, pp. 6333-6342
  • Tellgren, E.I., Fliegl, H., Non-perturbative Treatment of Molecules in Linear Magnetic Fields: Calculation of Anapole Susceptibilities (2013) J. Chem. Phys., 139, p. 164118
  • Pagola, G.I., Ferraro, M.B., Provasi, P.F., Pelloni, S., Lazzeretti, P., Theoretical Estimates of the Anapole Magnetizabilities of C 4 H 4 X 2 Cyclic Molecules for X = O, S, Se, and Te (2014) J. Chem. Phys., 141, p. 94305
  • Zarycz, N., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Computational Study of Basis Set and Electron Correlation Effects on Anapole Magnetizabilities of Chiral Molecules (2016) J. Comput. Chem., 37, pp. 1552-1558
  • Sen, S., Tellgren, E.I., Non-perturbative Calculation of Orbital and Spin Effects in Molecules Subject to Non-uniform Magnetic Fields (2018) J. Chem. Phys., 148, p. 184112
  • Pelloni, S., Lazzeretti, P., Anapolar Interaction of Aminoacids and Sugars in Nonuniform Magnetic Fields (2018) Rend. Lincei, 29, pp. 199-207
  • Pelloni, S., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Lazzeretti, P., Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle (2017) J. Phys. Chem. A, 121, pp. 9369-9376
  • Ceulemans, A., Chibotaru, L.F., Fowler, P.W., Molecular Anapole Moments (1998) Phys. Rev. Lett., 80, pp. 1861-1864
  • Berger, R., Prediction of a Cyclic Helical Oligoacetylene Showing Anapolar Ring Currents in the Magnetic Field (2012) Z. Naturforsch., B: J. Chem. Sci., 67, pp. 1127-1131
  • http://www2.cnrs.fr/en/1654.htm; https://www.nextbigfuture.com/2017/01/record-setting-32-and-36-tesla-magnets.html; https://www.nextbigfuture.com/2017/01/record-setting-32-and-36-tesla-magnets.html; Zablotskii, V., Lunov, O., Kubinova, S., Polyakova, T., Sykova, E., Dejneka, A., Effects of High-gradient Magnetic Fields on Living Cell Machinery (2016) J. Phys. D: Appl. Phys., 49, p. 493003
  • Ge, W., Encinas, A., Araujo, E., Song, S., Magnetic Matrices Used in High Gradient Magnetic Separation (HGMS): A Review (2017) Results Phys., 7, pp. 4278-4286
  • Osman, O., Zanini, L.F., Frénéa-Robin, M., Dumas-Bouchiat, F., Dempsey, N.M., Reyne, G., Buret, F., Haddour, N., Monitoring the Endocytosis of Magnetic Nanoparticles by Cells Using Permanent Micro-flux Sources (2012) Biomed. Microdevices, 14, pp. 947-954
  • Walther, A., Marcoux, C., Desloges, B., Grechishkin, R., Givord, D., Dempsey, N.M., Micro-patterning of NdFeB and SmCo Magnet Films for Integration into Micro-electro-mechanical Systems (2009) J. Magn. Magn. Mater., 321, pp. 590-594
  • Dumas-Bouchiat, F., Zanini, L.F., Kustov, M., Dempsey, N.M., Grechishkin, R., Hasselbach, K., Orlianges, J.C., Givord, D., Thermomagnetically Patterned Micromagnets (2010) Appl. Phys. Lett., 96, p. 102511
  • Kustov, M., Laczkowski, P., Hykel, D., Hasselbach, K., Dumas-Bouchiat, F., O'Brien, D., Kauffmann, P., Dempsey, N.M., Magnetic Characterization of Micropatterned Nd-Fe-B Hard Magnetic Films Using Scanning Hall Probe Microscopy (2010) J. Appl. Phys., 108, p. 63914
  • Dempsey, N.M., Le Roy, D., Marelli-Mathevon, H., Shaw, G., Dias, A., Kramer, R.B.G., Viet Cuong, L., Dumas-Bouchiat, F., Micro-magnetic Imprinting of High Field Gradient Magnetic Flux Sources (2014) Appl. Phys. Lett., 104, p. 262401
  • Pelloni, S., Lazzeretti, P., Monaco, G., Zanasi, R., Magnetic-field Induced Electronic Anapoles in Small Molecules (2011) Rend. Lincei, 22, pp. 105-112
  • Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Malagoli, M., Zanasi, R., Theoretical Study of the Magnetic Properties of Water Molecules in Non-Uniform Magnetic Fields (1994) J. Mol. Struct.: THEOCHEM, 305, pp. 89-99
  • Tellgren, E.I., Teale, A.M., Furness, J.W., Lange, K.K., Ekström, U., Helgaker, T., Non-perturbative Calculation of Molecular Magnetic Properties within Current-density Functional Theory (2014) J. Chem. Phys., 140, p. 34101
  • Tellgren, E.I., Soncini, A., Helgaker, T., Nonperturbative Ab Initio Calculations in Strong Magnetic Fields Using London Orbitals (2008) J. Chem. Phys., 129, p. 154114
  • Tellgren, E.I., Soncini, A., Helgaker, T., Non-perturbative Magnetic Phenomena in Closed-shell Paramagnetic Molecules (2009) Phys. Chem. Chem. Phys., 11, pp. 5489-5498
  • Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Calculation of Dipole-Shielding Polarizabilities (σ αβÎI): The Influence of Uniform Electric Field Effects on the Shielding of Backbone Nuclei in Proteins (2004) J. Chem. Phys., 120, pp. 9556-9560
  • Pagola, G.I., Pelloni, S., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Fourth-rank Hypermagnetizability of Medium-size Planar Conjugated Molecules and Fullerene (2005) Phys. Rev. A: At., Mol., Opt. Phys., 72, p. 33401
  • Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Nonlinear Response of the Benzene Molecule to Strong Magnetic Fields (2005) J. Chem. Phys., 122, p. 74318
  • Stopkowicz, S., Gauss, J., Lange, K.K., Tellgren, E.I., Helgaker, T., Coupled Cluster Theory for Atoms and Molecules in Strong Magnetic Fields (2015) J. Chem. Phys., 143, p. 74110
  • Adamowicz, L., Tellgren, E.I., Helgaker, T., Non-Born-Oppenheimer Calculations of the HD Molecule in a Strong Magnetic Field (2015) Chem. Phys. Lett., 639, pp. 295-299
  • Condon, E.U., Theories of Optical Rotatory Power (1937) Rev. Mod. Phys., 9, pp. 432-457
  • Pedersen, T.B., Koch, H., Coupled Cluster Response Functions Revisited (1997) J. Chem. Phys., 106, pp. 8059-8072
  • Pedersen, T.B., Fernández, B., Koch, H., Gauge Invariant Coupled Cluster Response Theory Using Optimized Nonorthogonal Orbitals (2001) J. Chem. Phys., 114, pp. 6983-6993
  • Ruud, K., Stephens, P.J., Devlin, F.J., Taylor, P.R., Cheeseman, J.R., Frisch, M.J., Coupled-cluster calculations of optical rotation (2003) Chem. Phys. Lett., 373, pp. 606-614
  • Lazzeretti, P., General Connections among Nuclear Electromagnetic Shieldings and Polarizabilities (2007) Adv. Chem. Phys., 75, pp. 507-549
  • Lazzeretti, P., Wilson, S., Electric and Magnetic Properties of Molecules (2003) Handbook of Molecular Physics and Quantum Chemistry, 3, pp. 53-145. , Ed. John Wiley & Sons, Ltd. Chichester, U.K. Part 1, Chapter 3
  • (2005) DALTON, An Electronic Structure Program, , http://www.kjemi.uio.no/software/dalton/, release 2.0
  • Becke, A.D., Density-functional Thermochemistry. III. the Role of Exact Exchange (1993) J. Chem. Phys., 98, pp. 5648-5652
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Pople, J.A., (2003) Gaussian 2003, , revision B.05; Gaussian, Inc. Pittsburgh, PA
  • Moccia, R., Upper Bounds for the Calculation of Second Order HF Energies (1970) Chem. Phys. Lett., 5, pp. 265-268
  • Hollenstein, H., Luckhaus, D., Pochert, J., Quack, M., Seyfang, G., Synthesis, Structure, High-Resolution Spectroscopy, and Laser Chemistry of Fluorooxirane and 2,2-[2H2]-Fluorooxirane (1997) Angew. Chem., Int. Ed. Engl., 36, pp. 140-143
  • Dunning, T.H., Jr., Gaussian Basis Set for Use in Correlated Molecular Calculations. I. the Atoms Boron through Neon and Hydrogen (1989) J. Chem. Phys., 90, pp. 1007-1023
  • Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J., Electron Affinities of the First-row Atoms Revisited. Systematic Basis Sets and Wave Functions (1992) J. Chem. Phys., 96, pp. 6796-6806
  • Woon, D.E., Dunning, T.H., Jr., Gaussian Basis Set for Use in Correlated Molecular Calculations. III. the Atoms Aluminium through Argon (1993) J. Chem. Phys., 98, pp. 1358-1371
  • Berger, R., Quack, M., Stohner, J., Isotopic Chirality and Molecular Parity Violation (2005) Angew. Chem., Int. Ed. Engl., 44, pp. 3623-3626
  • Kaminsky, W., Experimental and Phenomenological Aspects of Circular Birefringence and Related Properties in Transparent Crystals (2000) Rep. Prog. Phys., 63, p. 1575
  • Mohr, P.J., Newell, D.B., Taylor, B.N., CODATA Recommended Values of the Fundamental Physical Constants: 2014 (2008) Rev. Mod. Phys., 80, pp. 633-730

Citas:

---------- APA ----------
Pagola, G.I., Ferraro, M.B., Provasi, P.F., Pelloni, S. & Lazzeretti, P. (2019) . Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study. Journal of Chemical Theory and Computation.
http://dx.doi.org/10.1021/acs.jctc.8b01002
---------- CHICAGO ----------
Pagola, G.I., Ferraro, M.B., Provasi, P.F., Pelloni, S., Lazzeretti, P. "Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study" . Journal of Chemical Theory and Computation (2019).
http://dx.doi.org/10.1021/acs.jctc.8b01002
---------- MLA ----------
Pagola, G.I., Ferraro, M.B., Provasi, P.F., Pelloni, S., Lazzeretti, P. "Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study" . Journal of Chemical Theory and Computation, 2019.
http://dx.doi.org/10.1021/acs.jctc.8b01002
---------- VANCOUVER ----------
Pagola, G.I., Ferraro, M.B., Provasi, P.F., Pelloni, S., Lazzeretti, P. Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study. J. Chem. Theory Comput. 2019.
http://dx.doi.org/10.1021/acs.jctc.8b01002