Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we compare the performance of different DFT implementations, using analytical and numerical basis sets for the expansion of the atomic wave function, in determining structural and energetic parameters of Cisplatin and some biorelevant derivatives. Characterization of the platinum-containing species was achieved at the HF, MP2, and DFT (PBE1PBE, mPW1PW91, B3LYP, B3PW91, and B3P86) levels of theory, using two relativistic effective core potentials to treat the Pt atom (LanL2DZ and SBK), together with analytical Gaussian-type basis sets as implemented in Gaussian03. These results were compared with those obtained with the SIESTA code that employs a pseudopotential derived from the Troullier-Martins procedure for the Pt atom and numerical pseudoatomic orbitals as basis set. All modeled properties were also compared with the experimental values when available or to the best theoretical calculations known to date. On the basis of the results, SIESTA is an excellent alternative to determine structure and energetics of platinum complexes derived from Cisplatin, with less computational efforts. This validates the use of the SIESTA code for this type of chemical systems and thus provides a computationally efficient quantum method (capable to linear scaling at large sizes and available in QM/MM implementations) for exploring larger and more complex chemical models which shall reproduce more faithfully the real chemistry of Cisplatin in physiological conditions. © 2008 American Chemical Society.

Registro:

Documento: Artículo
Título:Structural and energetic study of cisplatin and derivatives: Comparison of the performance of density funtional theory implementations
Autor:Dans, P.D.; Crespo, A.; Estrin, D.A.; Coitiño, E.L.
Filiación:Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Centro Universitario Malvín Norte, Iguá 4225, Montevideo 11400, Uruguay
Departamento de Quimica Inorganica, Analitica y Quimica Física/IUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Pabellón II, Buenos Aires (C1428EHA), Argentina
Año:2008
Volumen:4
Número:5
Página de inicio:740
Página de fin:750
DOI: http://dx.doi.org/10.1021/ct7002385
Título revista:Journal of Chemical Theory and Computation
Título revista abreviado:J. Chem. Theory Comput.
ISSN:15499618
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v4_n5_p740_Dans

Referencias:

  • Jamieson, E.R., Lippard, S.J., Structure, Recognition, and Processing of Cisplatin-DNA Adducts (1999) Chem. Rev, 99, pp. 2467-2496
  • Rosenberg, B., Platinum Complexes for the Treatment of Cancer: Why the Search Goes on (1999) Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug, pp. 3-27. , Lippert, B, Ed, Wiley-VCH: Zürich
  • Villani, G., Le Gac, N.T., Hoffmann, J.-S., Replication of Platinated DNA and Its Mutagenic Consequences (1999) Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, pp. 135-157. , Lippert, B, Ed, Wiley-VCH: Zürich
  • Zambie, D.B., Lippard, S.J., The Response of Cellular Proteins to Cisplatin-Damaged DNA (1999) Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, pp. 73-110. , Lippert, B, Ed, Wiley-VCH: Zürich
  • Fuertes, M.A., Alonso, C., Pérez, J.M., Biochemical modulation of Cisplatin mechanisms of action: Enhancement of antitumor activity and circumvention of drug resistance (2003) Chem. Rev, 103, pp. 645-662
  • Wang, D., Lippard, S.J., Cellular Procesing of Platinum Anticancer Drugs (2005) Nature Rev, 4, pp. 307-320
  • Basch, H, Krauss, M, Stevens, W. J, Cohen, D. Electronic and geometric structures of Pt(NH3)22, Pt(NH 3)2Cl2, Pt(NH3)3X, and Pt(NH3)2XY X, Y, H2O, OH, Inorg. Chem. 1985, 24, 3313-3317; Kozelka, J., Savinelli, R., Berthier, G., Flament, J.P., Lavery, R., Force field for platinum binding to adenine (1993) J. Comput. Chem, 14, pp. 45-53
  • Cundari, T.R., Fu, W., Moody, E.W., Slavin, L.L., Snyder, L.A., Sommerer, S.O., Klinckman, T.R., Molecular Mechanics Force Field for Platinum Coordination Complexes (1996) J. Phys. Chem, 100, pp. 18057-18064
  • Pavankumar, P.N.V., Seetharamulu, S., Yao, S., Saxe, J.D., Reddy, D.G., Hausheer, F.H., Comprehensive Ab Initio Quantum Mechanical and Molecular Orbital (MO) Analysis of Cisplatin: Structure, Bonding, Charge Density, and Vibrational Frequencies (1999) J. Comput. Chem, 20, pp. 365-382
  • Wysokinski, R., Michalska, D., The Performance of Different Density Functional Methods in the Calculation of Molecular Structures and Vibrational Spectra of Platinum(II) Antitumor Drugs: Cisplatin and Carboplatin (2001) J. Comput. Chem, 22, p. 901912
  • Hofmann, A., Jaganyi, D., Munro, O.Q., Liehr, G., van Eldik, R., Electronic Tuning of the Lability of Pt(II) Complexes through π-Acceptor Effects. Correlations between Thermodynamic, Kinetic, and Theoretical Parameters (2003) Inorg. Chem, 42, pp. 1688-1700
  • Michalska, D., Wysokinski, R., Molecular Structure and Bonding in Platinum-Picoline Anticancer Complex: Density Functional Study (2004) Collect. Czech. Chem. Commun, 69, pp. 63-72
  • Wysokinski, R., Kuduk-Jaworska, J., Michalska, D., Electronic Structure, Raman and Infrared spectra, and vibrational assignment of Carboplatin. Density functional theory studies (2006) J. Mol. Struct. (Theochem), 758, pp. 169-179
  • Wysokinski, R., Hernik, K., Szostak, R., Michalska, D., Electronic structure and vibrational spectra of cis-diammine-(orotato)platinum(II), a potential Cisplatin analogue: DFT and experimental study (2007) Chem. Phys, 333, pp. 37-48
  • Carloni, P., Andreoni, W., Hutter, J., Curioni, A., Giannozzi, P., Parrinello, M., Structure and bonding in cisplatin and other Pt(II) complexes (1995) Chem. Phys. Lett, 234, pp. 50-56
  • Tornaghi, E., Andreoni, W., Carloni, P., Hutter, J., Parrinello, M., Carboplatin versus cisplatin: Density functional approach to their molecular properties (1995) Chem. Phys. Lett, 246, pp. 469-474
  • Carloni, P., Andreoni, W., Platinum-Modified Nucleobase Pairs in the Solid State: A Theoretical Study (1996) J. Phys. Chem, 100, pp. 17797-17800
  • Carloni, P., Sprik, M., Andreoni, W., Key Steps of the cis-Platin-DNA Interaction: Density Functional Theory-Based Molecular Dynamics Simulations (2000) J. Phys. Chem. B, 104, pp. 823-835
  • Spiegel, K., Rothlisberger, U., Carloni, P., Cisplatin Binding to DNA Oligomers from Hybrid Car-Parrinello/Molecular Dynamics Simulations (2004) J. Phys. Chem. B, 108, pp. 2699-2707
  • Magistrate, A., Ruggerone, P., Spiegel, K., Carloni, P., Reedjik, J., (2006) J. Phys. Chem. B, 110, pp. 3604-3613
  • Deeth, R.J., Elding, L.I., Theoretical Modeling of Water Exchange on [Pd(H2O)4]2+1, [Pt(H2O) 4]2+, and trans-[PtCl2 (H2O) 2] (1996) Inorg. Chem, 35, pp. 5019-5026
  • Chval, Z., Sip, M., Pentacoordinated transition states of cisplatin hydrolysis-ab initio study (2000) J. Mol. Struct. (Theochem), 532, pp. 59-68
  • Burda, J.V., Zeizinger, M., Sponer, J., Leszczynski, J., Hydration of cis- and trans-platin: A pseudopotential treatment in the frame of a G3-type theory for platinum complexes (2000) J. Chem. Phys, 113, pp. 2224-2232
  • Bergès, J., Caillet, J., Langlet, J., Kozelka, J., Hydration and 'inverse hydration' of platinum(II) complexes: An analysis using the density functionals PW91 and BLYP (2001) Chem. Phys. Lett, 344, pp. 573-577
  • Zhang, Y., Guo, Z., You, X., Hydrolysis Theory for Cisplatin and Its Analogues Based on Density Functional Studies (2001) J. Am. Chem. Soc, 123, pp. 9378-9387
  • Tsipis, A.C., Sigalas, M.P., Mechanistic aspects of the complete set of hydrolysis and anation reactions of cis- and trans-DDP related to their antitumor activity modeled by an improved ASED-MO approach (2002) J. Mol. Struct. (Theochem), 584, pp. 235-248
  • Costa, L.A.S., Rocha, W.R., De Almeida, W.B., Dos Santos, H.F., The hydrolysis process of the cis-dichloro(ethylendiamine)platinum(II): A theoretical study (2003) J. Chem. Phys, 118, pp. 10584-10592
  • Costa, L.A.S., Rocha, W.R., De Almeida, W.B., Dos Santos, H.F., The solvent effect on the aquation processes of the cis- dichloro(ethylenediammine)platinum(II) using continuum solvation models (2004) Chem. Phys. Lett, 387, pp. 182-187
  • Burda, J.V., Zeizinger, M., Leszczynski, J., Activation barriers and rate constants for hydration of platinum and palladium square-planar complexes: An ab initio study (2004) J. Chem. Phys, 120, pp. 1253-1262
  • Robertazzi, A., Platts, J.A., Hydrogen Bonding, Solvation and Hydrolysis of Cisplatin: A Theoretical Study (2004) J. Comput. Chem, 25, pp. 1060-1067
  • Raber, J., Zhu, C., Eriksson, L.A., Activation of anti-cancer drug Cisplatin-is the activated complex fully aquated (2004) Mol. Phys, 102, pp. 2537-2544
  • Zhu, C., Raber, J., Eriksson, L.A., Hydrolysis Process of the Second Generation Platinum-Based Anticancer Drug cis-Amminedichloro- cyclohexylamineplatinum(II) (2005) J. Phys. Chem. B, 109, pp. 12195-12205
  • Lau, J.K.-C., Deubel, D.V., Hydrolysis of the Anticancer Drug Cisplatin: Pitfalls in the Interpretation of Quantum Chemical Calculations (2006) J. Chem. Theory Comput, 2, pp. 103-106
  • Song, T., Hu, P., Insight into the solvent effect: A density functional theory study of Cisplatin hydrolysis (2006) J. Chem. Phys, 125, p. 091101
  • Boudreaux, E. A.; Carsey, T. P. Quasirelativistic MO Calculations on Platinum complexes (Anticancer Drugs) and their Interaction with DNA. Int. J. Quantum Chem. 1980, 18, 469-479; Basch, H.; Krauss, M.; Stevens, W. J.; Cohen, D. Binding of Pt(NH3)3 2+ to nucleic acid bases. Inorg. Chem. 1986, 25, 684-688; Zilberberg, I.L., Avdeev, V.I., Zhidomirov, G.M., Effect of cisplatin binding on guanine in nucleic acid: An ab initio study (1997) J. Mol. Struct. (Theochem), 418, pp. 73-81
  • Pelmenschikov, A.; Zilberberg, I. L.; Leszczynski, J.; Famulari, A.; Sironi, M.; Raimondi, M. cis[Pt(NH3)2]2+ coordination to the N7 and 06 sites of a guanine-cytosine pair: disruption of the Watson-Crick H-bonding pattern. Chem. Phys. Lett. 1999, 314, 496-500; Burda, J.V., Sponer, J., Leszczynski, J., The interactions of square platinum(II) complexes with guanine and adenine: A quantum-chemical ab initio study of metalated tautomeric forms (2000) J. Biol. Inorg. Chem, 5, pp. 178-188
  • Burda, J.V., Sponer, J., Leszczynski, J., The influence of square planar platinum complexes on DNA base pairing. An ab initio DFT study (2001) Phys. Chem. Chem. Phys, 3, pp. 4404-4411
  • Tsipis, A.C., Katsoulos, G.A., Conformational preferences, rotational barriers and energetics of purine nucleobase rotation and dissociation in square planar platinum(II) antitumour complexes: Structure-activity correlation (2001) Phys. Chem. Chem. Phys, 3, pp. 5165-5172
  • Deubel, D.V., On the Competition of the Purine Bases, Functionalities of Peptide Side Chains, and Protecting Agents for the Coordination Sites of Dicationic Cisplatin Derivatives (2002) J. Am. Chem. Soc, 124, pp. 5834-5842
  • Baik, M.-H., Friesner, R.A., Lippard, S., Theoretical Study on the Stability of N-Glycosyl Bonds: Why Does N7-Platination Not Promote Depurination (2002) J. Am. Chem. Soc, 124, pp. 4495-4503
  • Baik, M.-H., Friesner, R.A., Lippard, S.J., Theoretical Study of Cisplatin Binding to Purine Bases: Why Does Cisplatin Prefer Guanine over Adenine (2003) J. Am. Chem. Soc, 125, pp. 14082-14092
  • Chval, Z., Sip, M., Transition states of cisplatin binding to guanine and adenine: Ab initio reactivity study (2003) Collect. Czech. Chem. Commun, 68, pp. 1105-1118
  • Burda, J.V., Sponer, J., Hrabakova, J., Zeizinger, M., Leszczynski, J., The Influence of N7 Guanine Modifications on the Strength of Watson-Crick Base Pairing and Guanine N1 Acidity: Comparison of GasPhase and Condensed-Phase Trends (2003) J. Phys. Chem. B, 107, pp. 5349-5356
  • Burda, J.V., Leszczynski, J., How Strong Can the Bend Be on a DNA Helix from Cisplatin? DFT and MP2 Quantum Chemical Calculations of Cisplatin-Bridged DNA Purine Bases (2003) Inorg. Chem, 42, pp. 7162-7172
  • Deubel, D.V., Factors Governing the Kinetic Competition of Nitrogen and Sulfur Ligands in Cisplatin Binding to Biological Targets (2004) J. Am. Chem. Soc, 126, pp. 5999-6004
  • Jia, M., Qu, W., Yang, Z., Chen, G., Theoretical study on the factors that affect the structure and stability of the adduct of a new platinum anticancer drug with a duplex DNA (2005) Int. J. Modern Phys. B, 19, pp. 2939-2949
  • Raber, J., Zhu, C., Eriksson, L.A., Theoretical Study of Cisplatin Binding to DNA: The Importance of Initial Complex Stabilization (2005) Phys. Chem. B, 109, pp. 11006-11015
  • Costa, L.A., Hambley, T.W., Rocha, W.R., Almeida, W.B., Dos Santos, H.F., Kinetics and structural aspects of the cisplatin interactions with guanine: A quantum mechanical description (2006) Int. J. Quantum Chem, 106, pp. 2129-2144
  • Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14, pp. 2745-2779
  • Reich, S., Thomsen, C., Ordejón, P., Electronic band structure of isolated and bundled carbon nanotubes (2002) Phys. Rev. B, 65, pp. 155411-155422
  • Dans, P.D., Coitiño, E.L., Crespo, A., Estrín, D.A., Unraveling Step by Step the Molecular Choreography Ruling the Sequence-Dependent DNA Structural Changes Promoted by Cisplatin (2008), in preparation; Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomeri, J. A, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Baboul, A. G, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, Y, Nanayakkara, A, Challacombe, M, Gill, P. M. W, Johnson, B, Chen, W, Wong, M. W, Andres, J. L, Gonzalez, C, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 03, revision B05; Gaussian Inc, Pittsburgh, PA, 1998; Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., General atomic and molecular electronic structure system (1993) J. Comput. Chem, 14, pp. 1347-1363
  • Møller, C., Plesset, M.S., Note on an Approximation Treatment for Many-Electron Systems (1934) Phys. Rev, 46, pp. 618-622
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett, 77, pp. 3865-3868
  • Adamo, C., Barone, V., Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models (1998) J. Chem. Phys, 108, pp. 664-675
  • Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) Chem. Phys, 98, pp. 5648-5652
  • Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B, 37, pp. 785-789
  • Burke, K., Perdew, J.P., Wang, Y., (1998) Electronic Density Functional Theory: Recent Progress and New Directions, pp. 1-395. , Dobson, J. F, Vignale, G, Das, M. P, Eds, Plenum: New York
  • Perdew, J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas (1986) Phys. Rev. B, 33, pp. 8822-8824
  • Stevens, W., Basch, H., Krauss, J., Compact effective potentials and efficient shared-exponent basis sets for the first-and second-row atoms (1984) J. Chem. Phys, 81, pp. 6026-6033
  • Stevens, W.J., Krauss, M., Basch, H., Jasien, P.G., Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms (1992) Can. J. Chem, 70, pp. 612-630
  • Dunning Jr., T.H., Hay, P.J., Gaussian basis sets for molecular calculations (1976) Modern Theoretical Chemistry, 3, pp. 1-28. , Schaefer, H. F, III, Ed, Plenum: New York
  • Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg (1985) J. Chem. Phys, 82, pp. 270-283
  • Wadt, W.R., Hay, P.J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi (1985) J. Chem. Phys, 82, pp. 284-298
  • Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals (1985) J. Chem. Phys, 82, pp. 299-310
  • Ditchfield, R., Hehre, W.J., Pople, J.A., Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules (1971) J. Chem. Phys, 54, pp. 724-728
  • Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical Study of the Truncated Hemoglobin HbN: Exploring the Molecular Basis of the NO Detoxification Mechanism (2005) J. Am. Chem. Soc, 127, pp. 4433-4444
  • Marti, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejón, P., Estrin, D.A., Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase (2003) J. Biol. Inorg. Chem, 8, pp. 595-600
  • Marti, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., Nitric Oxide Interaction with Cytochrome c and Its Relevance to Guanylate Cyclase. Why does the Iron Histidine Bond Break (2005) J. Am. Chem. Soc, 127, pp. 7721-7728
  • Troullier, N., Martins, J.L., Efficient pseudopotentials for plane-wave calculations (1991) Phys. Rev. B, 43, pp. 1993-2006
  • Milburn, G.H.W., Truter, M.R., The crystal structures of cis- and trans-dichlorodiammineplatinum(II) (1966) J. Chem. Soc. A, 1, pp. 1609-1616
  • Wing, R.M., Pjura, P., Drew, H.R., Dickerson, R.E., The primary mode of binding of cisplatin to a B-DNA dodecamer: C-G-C-G-A-A-T-T-C-G-C-G (1984) EMBO J, 3, pp. 1201-1206
  • Hellquist, B., Bengtsson, L.A., Holmberg, B., Hedman, B., Persson, I., Elding, L.I., Structures of solvated cations of Palladium(II) and Platinum(II) in dimethyl sulfoxide, acetonitrile and aqueous solution studied by exafs and laxs (1991) Acta Chem. Scand, 45, pp. 449-455
  • Berners-Price, S.J., Appleton, T.G., The Chemistry of Cisplatin in Aqueous Solution (2000) Platinum-Based Drugs in Cancer Therapy, pp. 3-35. , Farrell, N. P, Kelland, L. R, Eds, Humana Press Inc: Totowa
  • van der Wijst, T., Fonseca Guerra, C., Swart, M., Bickelhaupt, F.M., Performance of various density functionals for the hydrogen bonds in DNA base pairs (2006) Chem. Phys. Lett, 426, pp. 415-421

Citas:

---------- APA ----------
Dans, P.D., Crespo, A., Estrin, D.A. & Coitiño, E.L. (2008) . Structural and energetic study of cisplatin and derivatives: Comparison of the performance of density funtional theory implementations. Journal of Chemical Theory and Computation, 4(5), 740-750.
http://dx.doi.org/10.1021/ct7002385
---------- CHICAGO ----------
Dans, P.D., Crespo, A., Estrin, D.A., Coitiño, E.L. "Structural and energetic study of cisplatin and derivatives: Comparison of the performance of density funtional theory implementations" . Journal of Chemical Theory and Computation 4, no. 5 (2008) : 740-750.
http://dx.doi.org/10.1021/ct7002385
---------- MLA ----------
Dans, P.D., Crespo, A., Estrin, D.A., Coitiño, E.L. "Structural and energetic study of cisplatin and derivatives: Comparison of the performance of density funtional theory implementations" . Journal of Chemical Theory and Computation, vol. 4, no. 5, 2008, pp. 740-750.
http://dx.doi.org/10.1021/ct7002385
---------- VANCOUVER ----------
Dans, P.D., Crespo, A., Estrin, D.A., Coitiño, E.L. Structural and energetic study of cisplatin and derivatives: Comparison of the performance of density funtional theory implementations. J. Chem. Theory Comput. 2008;4(5):740-750.
http://dx.doi.org/10.1021/ct7002385