Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The variational reduced density matrix theory has been recently applied with great success to models within the truncated doubly occupied configuration interaction space, which corresponds to the seniority zero subspace. Conservation of the seniority quantum number restricts the Hamiltonians to be based on the SU(2) algebra. Among them there is a whole family of exactly solvable Richardson-Gaudin pairing Hamiltonians. We benchmark the variational theory against two different exactly solvable models, the Richardson-Gaudin-Kitaev and the reduced BCS Hamiltonians. We obtain exact numerical results for the so-called PQGT N-representability conditions in both cases for systems that go from 10 to 100 particles. However, when random single-particle energies as appropriate for small superconducting grains are considered, the exactness is lost but still a high accuracy is obtained. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models
Autor:Rubio-García, A.; Alcoba, D.R.; Capuzzi, P.; Dukelsky, J.
Filiación:Instituto de Estructura de la Materia, CSIC, Serrano 123, Madrid, 28006, Spain
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Año:2018
Volumen:14
Número:8
Página de inicio:4183
Página de fin:4192
DOI: http://dx.doi.org/10.1021/acs.jctc.8b00387
Título revista:Journal of Chemical Theory and Computation
Título revista abreviado:J. Chem. Theory Comput.
ISSN:15499618
CODEN:JCTCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v14_n8_p4183_RubioGarcia

Referencias:

  • Kohn, W., Grethe, I., (2003) Nobel Lectures, Chemistry, 1996-2000, pp. 213-237. , World Scientific: Singapore, Chapter Electronic Structure of Matter-Wavefunctions and Density Functionals
  • Shavitt, I., Bartlett, R.J., (2009) Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory; Cambridge Molecular Science, , Cambridge University Press
  • Bartlett, R.J., Musiał, M., Coupled-cluster theory in quantum chemistry (2007) Rev. Mod. Phys., 79, pp. 291-352
  • Hagen, G., Papenbrock, T., Hjorth-Jensen, M., Dean, D.J., Coupled-cluster computations of atomic nuclei (2014) Rep. Prog. Phys., 77, p. 096302
  • White, S.R., Density matrix formulation for quantum renormalization groups (1992) Phys. Rev. Lett., 69, pp. 2863-2866
  • Niggemann, H., Klümper, A., Zittartz, J., Quantum phase transition in spin-3/2 systems on the hexagonal lattice - Optimum ground state approach (1997) Z. Phys. B: Condens. Matter, 104, pp. 103-110
  • Schollwöck, U., The density-matrix renormalization group (2005) Rev. Mod. Phys., 77, pp. 259-315
  • Vidal, G., Entanglement Renormalization (2007) Phys. Rev. Lett., 99, p. 220405
  • McMillan, W.L., Ground State of Liquid He4 (1965) Phys. Rev., 138, pp. A442-A451
  • Ceperley, D., Chester, G.V., Kalos, M.H., Monte Carlo simulation of a many-fermion study (1977) Phys. Rev. B, 16, pp. 3081-3099
  • Mezzacapo, F., Schuch, N., Boninsegni, M., Cirac, J.I., Ground-state properties of quantum many-body systems: Entangled-plaquette states and variational Monte Carlo (2009) New J. Phys., 11, p. 083026
  • Changlani, H.J., Kinder, J.M., Umrigar, C.J., Chan, G.K.-L., Approximating strongly correlated wave functions with correlator product states (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 80, p. 245116
  • Suzuki, M., Miyashita, S., Kuroda, A., Monte Carlo Simulation of Quantum Spin Systems (1977) Prog. Theor. Phys., 58, pp. 1377-1387
  • Prokof'Ev, N.V., Svistunov, B.V., Tupitsyn, I.S., Exact quantum Monte Carlo process for the statistics of discrete systems (1996) JETP Lett., 64, pp. 911-916
  • Syljuåsen, O.F., Sandvik, A.W., Quantum Monte Carlo with directed loops (2002) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 66, p. 046701
  • Alet, F., Wessel, S., Troyer, M., Generalized directed loop method for quantum Monte Carlo simulations (2005) Phys. Rev. e, 71, p. 036706
  • Motta, M., Ceperley, D.M., Chan, G.K.-L., Gomez, J.A., Gull, E., Guo, S., Jiménez-Hoyos, C.A., Zhang, S., Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods (2017) Phys. Rev. X, 7, p. 031059
  • Husimi, K., Some Formal Properties of the Density Matrix (1940) Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 22, pp. 264-314
  • Löwdin, P.-O., Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction (1955) Phys. Rev., 97, pp. 1474-1489
  • Mayer, J.E., Electron Correlation (1955) Phys. Rev., 100, pp. 1579-1586
  • Tredgold, R.H., Density Matrix and the Many-Body Problem (1957) Phys. Rev., 105, pp. 1421-1423
  • Coleman, A.J., Structure of Fermion Density Matrices (1963) Rev. Mod. Phys., 35, pp. 668-686
  • Liu, Y.-K., Christandl, M., Verstraete, F., Quantum Computational Complexity of the N-Representability Problem: QMA Complete (2007) Phys. Rev. Lett., 98, p. 110503
  • Garrod, C., Mihailović, M.V., Rosina, M., The variational approach to the two-body density matrix (1975) J. Math. Phys., 16, pp. 868-874
  • Nakata, M., Nakatsuji, H., Ehara, M., Fukuda, M., Nakata, K., Fujisawa, K., Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm (2001) J. Chem. Phys., 114, pp. 8282-8292
  • Mazziotti, D.A., Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix (2002) Phys. Rev. A: At., Mol., Opt. Phys., 65, p. 062511
  • Zhao, Z., Braams, B.J., Fukuda, M., Overton, M.L., Percus, J.K., The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions (2004) J. Chem. Phys., 120, pp. 2095-2104
  • Mihailović, M., Rosina, M., The variational approach to the density matrix for light nuclei (1975) Nucl. Phys. A, 237, pp. 221-228
  • Verstichel, B., Van Aggelen, H., Neck, D.V., Bultinck, P., Baerdemacker, S.D., A primal-dual semidefinite programming algorithm tailored to the variational determination of the two-body density matrix (2011) Comput. Phys. Commun., 182, pp. 1235-1244
  • Hammond, J.R., Mazziotti, D.A., Variational reduced-density-matrix calculation of the one-dimensional Hubbard model (2006) Phys. Rev. A: At., Mol., Opt. Phys., 73, p. 062505
  • Verstichel, B., Van Aggelen, H., Poelmans, W., Wouters, S., Neck, D.V., Extensive v2DM study of the one-dimensional Hubbard model for large lattice sizes: Exploiting translational invariance and parity (2013) Comput. Theor. Chem., 1003, pp. 12-21
  • Anderson, J.S., Nakata, M., Igarashi, R., Fujisawa, K., Yamashita, M., The second-order reduced density matrix method and the two-dimensional Hubbard model (2013) Comput. Theor. Chem., 1003, pp. 22-27
  • Talmi, I., (1993) Simple Models of Complex Nuclei, , Harwood Academic Publishers: Chur, Switzerland; Langhorne, Pa. U.S.A
  • Bytautas, L., Henderson, T.M., Jiménez-Hoyos, C.A., Ellis, J.K., Scuseria, G.E., Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy (2011) J. Chem. Phys., 135, p. 044119
  • Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions (2013) J. Chem. Phys., 139, p. 084103
  • Limacher, P.A., Ayers, P.W., Johnson, P.A., De Baerdemacker, S., Van Neck, D., Bultinck, P., A New Mean-Field Method Suitable for Strongly Correlated Electrons: Computationally Facile Antisymmetric Products of Nonorthogonal Geminals (2013) J. Chem. Theory Comput., 9, pp. 1394-1401
  • Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Configuration interaction wave functions: A seniority number approach (2014) J. Chem. Phys., 140, p. 234103
  • Weinhold, F., Wilson, E.B., Reduced Density Matrices of Atoms and Molecules. I. the 2 Matrix of Double-Occupancy, Configuration-Interaction Wavefunctions for Singlet States (1967) J. Chem. Phys., 46, pp. 2752-2758
  • Weinhold, F., Wilson, E.B., Reduced Density Matrices of Atoms and Molecules. II. on the N-Representability Problem (1967) J. Chem. Phys., 47, pp. 2298-2311
  • Poelmans, W., Van Raemdonck, M., Verstichel, B., De Baerdemacker, S., Torre, A., Lain, L., Massaccesi, G.E., Van Neck, D., Variational Optimization of the Second-Order Density Matrix Corresponding to a Seniority-Zero Configuration Interaction Wave Function (2015) J. Chem. Theory Comput., 11, pp. 4064-4076
  • Head-Marsden, K., Mazziotti, D.A., Pair 2-electron reduced density matrix theory using localized orbitals (2017) J. Chem. Phys., 147, p. 084101
  • Alcoba, D.R., Torre, A., Lain, L., Massaccesi, G.E., Oña, O.B., Honoré, E.M., Poelmans, W., Baerdemacker, S.D., Direct variational determination of the two-electron reduced density matrix for doubly occupied-configuration-interaction wave functions: The influence of three-index N-representability conditions (2018) J. Chem. Phys., 148, p. 024105
  • Poelmans, W., (2015) Variational Determination of the Two-particle Density Matrix: The Case of Doubly-occupied Space, , Ph.D. thesis, Ghent University
  • Dukelsky, J., Esebbag, C., Schuck, P., Class of Exactly Solvable Pairing Models (2001) Phys. Rev. Lett., 87, p. 066403
  • Dukelsky, J., Pittel, S., Sierra, G., Colloquium: Exactly solvable Richardson-Gaudin models for many-body quantum systems (2004) Rev. Mod. Phys., 76, pp. 643-662
  • Ortiz, G., Somma, R., Dukelsky, J., Rombouts, S., Exactly-solvable models derived from a generalized Gaudin algebra (2005) Nucl. Phys. B, 707, pp. 421-457
  • Ortiz, G., Dukelsky, J., Cobanera, E., Esebbag, C., Beenakker, C., Many-Body Characterization of Particle-Conserving Topological Superfluids (2014) Phys. Rev. Lett., 113, p. 267002
  • Richardson, R.W., Numerical Study of the 8-32-Particle Eigenstates of the Pairing Hamiltonian (1966) Phys. Rev., 141, pp. 949-956
  • Sierra, G., Dukelsky, J., Dussel, G.G., Von Delft, J., Braun, F., Exact study of the effect of level statistics in ultrasmall superconducting grains (2000) Phys. Rev. B: Condens. Matter Mater. Phys., 61, pp. R11890-R11893
  • Jorgensen, P., (1981) Second Quantization-Based Methods in Quantum Chemistry, , Academic Press: New York
  • Coleman, A.J., Cioslowski, J., (2000) Many-electron Densities and Reduced Density Matrices, pp. 1-17. , 1 st ed. Springer Science+Business Media: New York, Chapter RDMs: How Did We Get Here?
  • Garrod, C., Percus, J.K., Reduction of the N-Particle Variational Problem (1964) J. Math. Phys., 5, pp. 1756-1776
  • Kummer, H., N-Representability Problem for Reduced Density Matrices (1967) J. Math. Phys., 8, pp. 2063-2081
  • Coleman, A.J., Erdahl, R.M., (1974) Reduced Density Operators with Applications to Physical and Chemical Systems - II, Queen's Papers on Pure and Applied Mathematics, p. 2. , Queens University: Kingston, Ontario
  • Coleman, A.J., Yukalov, V.I., (2000) Reduced Density Matrices: Coulson's Challange, , Springer-Verlag: New York
  • Erdahl, R.M., Rosina, M., Erdahl, R.M., (1974) Reduced Density Operators with Applications to Physical and Chemical Systems - II, Queen's Papers in Pure and Applied Mathematics, p. 36. , Queens University: Kingston, Ontario
  • Erdahl, R.M., Representability (1978) Int. J. Quantum Chem., 13, pp. 697-718
  • Mazziotti, D.A., Variational two-electron reduced density matrix theory for many-electron atoms and molecules: Implementation of the spin- and symmetry-adapted T2 condition through first-order semidefinite programming (2005) Phys. Rev. A: At., Mol., Opt. Phys., 72, p. 032510
  • Nesterov, Y., Nemirovskii, A., (1994) Interior-Point Polynomial Algorithms in Convex Programming, , Society for Industrial and Applied Mathematics
  • Vandenberghe, L., Boyd, S., Semidefinite Programming (1996) SIAM Rev., 38, pp. 49-95
  • Wright, S., (1997) Primal-Dual Interior-Point Methods, , Society for Industrial and Applied Mathematics
  • Wright, S., Wolkowicz, H., Saigal, R., Vandenberghe, L., Handbook of Semidefinite Programming, 27. , 1 st ed. International Series in Operations Research & Management Science; Springer US: 2000
  • Yamashita, M., Fujisawa, K., Fukuda, M., Kobayashi, K., Nakata, K., Nakata, M., Anjos, M.F., Lasserre, J.B., (2011) Semidefinite, Cone and Polynomial Optimization, p. 687. , Springer: New York
  • Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K., (2010) A High-performance Software Package for Semidefinite Programs: SDPA 7
  • Nakata, M., Braams, B.J., Fujisawa, K., Fukuda, M., Percus, J.K., Yamashita, M., Zhao, Z., Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver (2008) J. Chem. Phys., 128, p. 164113
  • Claeys, P.W., De Baerdemacker, S., Van Raemdonck, M., Van Neck, D., Eigenvalue-based method and form-factor determinant representations for integrable XXZ Richardson-Gaudin models (2015) Phys. Rev. B: Condens. Matter Mater. Phys., 91, p. 155102
  • Kitaev, A.Y., Unpaired Majorana fermions in quantum wires (2001) Physics-Uspekhi, 44, p. 131
  • Ibañez, M., Links, J., Sierra, G., Zhao, S.-Y., Exactly solvable pairing model for superconductors with px+ ipy-wave symmetry (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 79, p. 180501
  • Rombouts, S.M.A., Dukelsky, J., Ortiz, G., Quantum phase diagram of the integrable px+ ipy fermionic superfluid (2010) Phys. Rev. B: Condens. Matter Mater. Phys., 82, p. 224510
  • Van Raemdonck, M., De Baerdemacker, S., Van Neck, D., Exact solution of the px+ ipy pairing Hamiltonian by deforming the pairing algebra (2014) Phys. Rev. B: Condens. Matter Mater. Phys., 89, p. 155136
  • Moore, G., Read, N., Nonabelions in the fractional quantum hall effect (1991) Nucl. Phys. B, 360, pp. 362-396
  • Read, N., Green, D., Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect (2000) Phys. Rev. B: Condens. Matter Mater. Phys., 61, pp. 10267-10297
  • Dukelsky, J., Pittel, S., Esebbag, C., Structure of the number-projected BCS wave function (2016) Phys. Rev. C: Nucl. Phys., 93, p. 034313
  • Richardson, R., A restricted class of exact eigenstates of the pairing-force Hamiltonian (1963) Phys. Lett., 3, pp. 277-279
  • Von Delft, J., Zaikin, A.D., Golubev, D.S., Tichy, W., Parity-Affected Superconductivity in Ultrasmall Metallic Grains (1996) Phys. Rev. Lett., 77, pp. 3189-3192
  • Ortiz, G., Dukelsky, J., BCS-to-BEC crossover from the exact BCS solution (2005) Phys. Rev. A: At., Mol., Opt. Phys., 72, p. 043611
  • Dukelsky, J., Sierra, G., Density Matrix Renormalization Group Study of Ultrasmall Superconducting Grains (1999) Phys. Rev. Lett., 83, pp. 172-175
  • Degroote, M., Henderson, T.M., Zhao, J., Dukelsky, J., Scuseria, G.E., Polynomial similarity transformation theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian (2016) Phys. Rev. B: Condens. Matter Mater. Phys., 93, p. 125124
  • Ripoche, J., Lacroix, D., Gambacurta, D., Ebran, J.-P., Duguet, T., Combining symmetry breaking and restoration with configuration interaction: A highly accurate many-body scheme applied to the pairing Hamiltonian (2017) Phys. Rev. C: Nucl. Phys., 95, p. 014326

Citas:

---------- APA ----------
Rubio-García, A., Alcoba, D.R., Capuzzi, P. & Dukelsky, J. (2018) . Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models. Journal of Chemical Theory and Computation, 14(8), 4183-4192.
http://dx.doi.org/10.1021/acs.jctc.8b00387
---------- CHICAGO ----------
Rubio-García, A., Alcoba, D.R., Capuzzi, P., Dukelsky, J. "Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models" . Journal of Chemical Theory and Computation 14, no. 8 (2018) : 4183-4192.
http://dx.doi.org/10.1021/acs.jctc.8b00387
---------- MLA ----------
Rubio-García, A., Alcoba, D.R., Capuzzi, P., Dukelsky, J. "Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models" . Journal of Chemical Theory and Computation, vol. 14, no. 8, 2018, pp. 4183-4192.
http://dx.doi.org/10.1021/acs.jctc.8b00387
---------- VANCOUVER ----------
Rubio-García, A., Alcoba, D.R., Capuzzi, P., Dukelsky, J. Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models. J. Chem. Theory Comput. 2018;14(8):4183-4192.
http://dx.doi.org/10.1021/acs.jctc.8b00387