Artículo

Lu, J.; Jacobson, L.C.; Perez Sirkin, Y.A.; Molinero, V."High-resolution coarse-grained model of hydrated anion-exchange membranes that accounts for hydrophobic and ionic interactions through short-ranged potentials" (2017) Journal of Chemical Theory and Computation. 13(1):245-264
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Molecular simulations provide a versatile tool to study the structure, anion conductivity, and stability of anion-exchange membrane (AEM) materials and can provide a fundamental understanding of the relation between structure and property of membranes that is key for their use in fuel cells and other applications. The quest for large spatial and temporal scales required to model the multiscale structure and transport processes in the polymer electrolyte membranes, however, cannot be met with fully atomistic models, and the available coarse-grained (CG) models suffer from several challenges associated with their low-resolution. Here, we develop a high-resolution CG force field for hydrated polyphenylene oxide/trimethylamine chloride (PPO/TMACl) membranes compatible with the mW water model using a hierarchical parametrization approach based on Uncertainty Quantification and reference atomistic simulations modeled with the Generalized Amber Force Field (GAFF) and TIP4P/2005 water. The parametrization weighs multiple properties, including coordination numbers, radial distribution functions (RDFs), self-diffusion coefficients of water and ions, relative vapor pressure of water in the solution, hydration enthalpy of the tetramethylammonium chloride (TMACl) salt, and cohesive energy of its aqueous solutions. We analyze the interdependence between properties and address how to compromise between the accuracies of the properties to achieve an overall best representability. Our optimized CG model FFcomp quantitatively reproduces the diffusivities and RDFs of the reference atomistic model and qualitatively reproduces the experimental relative vapor pressure of water in solutions of tetramethylammonium chloride. These properties are of utmost relevance for the design and operation of fuel cell membranes. To our knowledge, this is the first CG model that includes explicitly each water and ion and accounts for hydrophobic, ionic, and intramolecular interactions explicitly parametrized to reproduce multiple properties of interest for hydrated polyelectrolyte membranes. The CG model of hydrated PPO/TMACl water is about 100 times faster than the reference atomistic GAFF-TIP4P/2005 model. The strategy implemented here can be used in the parametrization of CG models for other substances, such as biomolecular systems and membranes for desalination, water purification, and redox flow batteries. We anticipate that the large spatial and temporal simulations made possible by the CG model will advance the quest for anion-exchange membranes with improved transport and mechanical properties. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:High-resolution coarse-grained model of hydrated anion-exchange membranes that accounts for hydrophobic and ionic interactions through short-ranged potentials
Autor:Lu, J.; Jacobson, L.C.; Perez Sirkin, Y.A.; Molinero, V.
Filiación:Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, United States
Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Año:2017
Volumen:13
Número:1
Página de inicio:245
Página de fin:264
DOI: http://dx.doi.org/10.1021/acs.jctc.6b00874
Handle:http://hdl.handle.net/20.500.12110/paper_15499618_v13_n1_p245_Lu
Título revista:Journal of Chemical Theory and Computation
Título revista abreviado:J. Chem. Theory Comput.
ISSN:15499618
CODEN:JCTCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v13_n1_p245_Lu

Referencias:

  • Varcoe, J.R., Slade, R.C.T., Prospects for alkaline anion-exchange membranes in low temperature fuel cells (2005) Fuel Cells, 5 (2), pp. 187-200
  • Xu, T., Ion exchange membranes: State of their development and perspective (2005) J. Membr. Sci, 263 (1-2), pp. 1-29
  • Hickner, M.A., Ion-containing polymers: New energy & clean water (2010) Mater. Today, 13 (5), pp. 34-41
  • Merle, G., Wessling, M., Nijmeijer, K., Anion exchange membranes for alkaline fuel cells: A review (2011) J. Membr. Sci, 377 (1-2), pp. 1-35
  • Pan, J., Chen, C., Zhuang, L., Lu, J., Designing advanced alkaline polymer electrolytes for fuel cell applications (2012) Acc. Chem. Res, 45 (3), pp. 473-481
  • Wang, Y.-J., Qiao, J., Baker, R., Zhang, J., Alkaline polymer electrolyte membranes for fuel cell applications (2013) Chem. Soc. Rev, 42 (13), pp. 5768-5787
  • Varcoe, J.R., Atanassov, P., Dekel, D.R., Herring, A.M., Hickner, M.A., Kohl, P.A., Kucernak, A.R., Zhuang, L., Anion-exchange membranes in electrochemical energy systems (2014) Energy Environ. Sci, 7 (10), pp. 3135-3191
  • Gülzow, E., Alkaline fuel cells: A critical view (1996) J. Power Sources, 61 (1), pp. 99-104
  • Dekel, D.R., Alkaline membrane fuel cell (amfc) materials and system improvement-state-of-the-art (2013) ECS Trans, 50 (2), pp. 2051-2052
  • Sarode, H.N., Lindberg, G.E., Yang, Y., Felberg, L.E., Voth, G.A., Herring, A.M., Insights into the transport of aqueous quaternary ammonium cations: A combined experimental and computational study (2014) J. Phys. Chem. B, 118 (5), pp. 1363-1372
  • Li, N., Yan, T., Li, Z., Thurn-Albrecht, T., Binder, W.H., Combshaped polymers to enhance hydroxide transport in anion exchange membranes (2012) Energy Environ. Sci, 5 (7), pp. 7888-7892
  • Wu, L., Zhou, G., Liu, X., Zhang, Z., Li, C., Xu, T., Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy (2011) J. Membr. Sci, 371 (1-2), pp. 155-162
  • McClure, J.P., Grew, K.N., Chu, D., Experimental development of alkaline and acid-alkaline bipolar membrane electrolytes ECS Trans, 2015 (18), pp. 35-44
  • Li, N., Leng, Y., Hickner, M.A., Comb-shaped copolymers for alkaline fuel cells (2013) J. Am. Chem. Soc, 135 (27), pp. 10124-10133
  • Jacobson, L.C., Ren, X., Molinero, V., Assessing the effects of crowding, pore size, and interactions on electro-osmotic drag coefficients (2014) J. Phys. Chem. C, 118 (4), pp. 2093-2103
  • Han, K.W., Ko, K.H., Abu-Hakmeh, K., Bae, C., Sohn, Y.J., Jang, S.S., Molecular dynamics simulation study of a polysulfone-based anion exchange membrane in comparison with the proton exchange membrane (2014) J. Phys. Chem. C, 118 (24), pp. 12577-12587
  • Chen, C., Tse, Y.-L.S., Lindberg, G.E., Knight, C., Voth, G.A., Hydroxide solvation and transport in anion exchange membranes (2016) J. Am. Chem. Soc, 138 (3), pp. 991-1000
  • Daly, K.B., Benziger, J.B., Debenedetti, P.G., Panagiotopoulos, A.Z., Molecular dynamics simulations of water sorption in a perfluorosulfonic acid membrane (2013) J. Phys. Chem. B, 117 (41), pp. 12649-12660
  • Daly, K.B., Benziger, J.B., Panagiotopoulos, A.Z., Debenedetti, P.G., Molecular dynamics simulations of water permeation across nafion membrane interfaces (2014) J. Phys. Chem. B, 118 (29), pp. 8798-8807
  • Wu, D., Paddison, S.J., Elliott, J.A., A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations (2008) Energy Environ. Sci, 1 (2), pp. 284-293
  • Jang, S.S., Molinero, V., Çaǧin, T., Goddard, W.A., Nanophase-segregation and transport in nafion 117 from molecular dynamics simulations: Effect of monomeric sequence (2004) J. Phys. Chem. B, 108 (10), pp. 3149-3157
  • Pan, J., Chen, C., Li, Y., Wang, L., Tan, L., Li, G., Tang, X., Zhuang, L., Constructing ionic highway in alkaline polymer electrolytes (2014) Energy Environ. Sci, 7 (1), pp. 354-360
  • Zhang, W., Van Duin, A.C.T., Reaxff reactive molecular dynamics simulation of functionalized poly(phenylene oxide) anion exchange membrane (2015) J. Phys. Chem. C, 119 (49), pp. 27727-27736
  • Devanathan, R., Venkatnathan, A., Rousseau, R., Dupuis, M., Frigato, T., Gu, W., Helms, V., Atomistic simulation of water percolation and proton hopping in nafion fuel cell membrane (2010) J. Phys. Chem. B, 114 (43), pp. 13681-13690
  • Devanathan, R., Idupulapati, N., Baer, M.D., Mundy, C.J., Dupuis, M., Ab initio molecular dynamics simulation of proton hopping in a model polymer membrane (2013) J. Phys. Chem. B, 117 (51), pp. 16522-16529
  • Lindberg, G.E., Knight, C., Felberg, L.E., Voth, G.A., Molecular dynamics simulations of hydroxide solvation and transport in anionic exchange membranes (2013) ECS Trans, 50 (2), pp. 2053-2058
  • Merinov, B.V., Goddard, W.A., III computational modeling of structure and oh-anion diffusion in quaternary ammonium polysulfone hydroxide -Polymer electrolyte for application in electrochemical devices (2013) J. Membr. Sci, 431, pp. 79-85
  • Noid, W.G., Perspective: Coarse-grained models for biomolecular systems (2013) J. Chem. Phys, 139 (9), p. 090901
  • Noguchi, H., Takasu, M., Self-assembly of amphiphiles into vesicles: A Brownian dynamics simulation (2001) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top, 64 (4), p. 041913
  • Farago, O., Water-free " computer model for fluid bilayer membranes (2003) J. Chem. Phys, 119 (1), pp. 596-605
  • Müller, M., Katsov, K., Schick, M., A new mechanism of model membrane fusion determined from monte carlo simulation (2003) Biophys. J, 85 (3), pp. 1611-1623
  • Brannigan, G., Brown, F.L.H., Solvent-free simulations of fluid membrane bilayers (2004) J. Chem. Phys, 120 (2), pp. 1059-1071
  • Murtola, T., Falck, E., Patra, M., Karttunen, M., Vattulainen, I., Coarse-grained model for phospholipid/cholesterol bilayer (2004) J. Chem. Phys, 121 (18), pp. 9156-9165
  • Sevink, G.J.A., Zvelindovsky, A.V., Self-assembly of complex vesicles (2005) Macromolecules, 38 (17), pp. 7502-7513
  • Cooke, I.R., Kremer, K., Deserno, M., Tunable generic model for fluid bilayer membranes (2005) Phys. Rev. e, 72 (1), p. 011506
  • Wang, Z.-J., Frenkel, D., Modeling flexible amphiphilic bilayers: A solvent-free off-lattice monte carlo study (2005) J. Chem. Phys, 122 (23), p. 234711
  • Smit, B., Hilbers, P.A.J., Esselink, K., Rupert, L.A.M., Van Os, N.M., Schlijper, A.G., Computer simulations of a water/oil interface in the presence of micelles (1990) Nature, 348 (6302), pp. 624-625
  • Goetz, R., Lipowsky, R., Computer simulations of bilayer membranes: Self-assembly and interfacial tension (1998) J. Chem. Phys, 108 (17), pp. 7397-7409
  • Venturoli, M., Smit, B., Simulating the self-assembly of model membranes (1999) PhysChemComm, 2 (10), pp. 45-49
  • Groot, R.D., Rabone, K.L., Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants (2001) Biophys. J, 81 (2), pp. 725-736
  • Shillcock, J.C., Lipowsky, R., Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations (2002) J. Chem. Phys, 117 (10), pp. 5048-5061
  • Den Otter, W.K., Briels, W.J., The bending rigidity of an amphiphilic bilayer from equilibrium and nonequilibrium molecular dynamics (2003) J. Chem. Phys, 118 (10), pp. 4712-4720
  • Stevens, M.J., Coarse-grained simulations of lipid bilayers (2004) J. Chem. Phys, 121 (23), pp. 11942-11948
  • Frink, L.J.D., Frischknecht, A.L., Density functional theory approach for coarse-grained lipid bilayers (2005) Phys. Rev. e, 72 (4), p. 041923
  • Markvoort, A.J., Pieterse, K., Steijaert, M.N., Spijker, P., Hilbers, P.A.J., The bilayer-vesicle transition is entropy driven (2005) J. Phys. Chem. B, 109 (47), pp. 22649-22654
  • Pool, R., Bolhuis, P.G., Can purely repulsive soft potentials predict micelle formation correctly? (2006) Phys. Chem. Chem. Phys, 8 (8), pp. 941-948
  • Marrink, S.J., De Vries, A.H., Mark, A.E., Coarse grained model for semiquantitative lipid simulations (2004) J. Phys. Chem. B, 108 (2), pp. 750-760
  • Izvekov, S., Voth, G.A., A multiscale coarse-graining method for biomolecular systems (2005) J. Phys. Chem. B, 109 (7), pp. 2469-2473
  • Lyubartsev, A.P., Multiscale modeling of lipids and lipid bilayers (2005) Eur. Biophys. J, 35 (1), pp. 53-61
  • Elezgaray, J., Laguerre, M., A systematic method to derive force fields for coarse-grained simulations of phospholipids (2006) Comput. Phys. Commun, 175 (4), pp. 264-268
  • Groot, R.D., Madden, T.J., Tildesley, D.J., On the role of hydrodynamic interactions in block copolymer microphase separation (1999) J. Chem. Phys, 110 (19), pp. 9739-9749
  • Hoogerbrugge, P.J., Koelman, J.M.V.A., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics (1992) EPL (Europhys. Lett.), 19 (3), p. 155
  • Koelman, J.M.V.A., Hoogerbrugge, P.J., Dynamic simulations of hard-sphere suspensions under steady shear (1993) EPL (Europhys. Lett.), 21 (3), p. 363
  • Español, P., Warren, P., Statistical mechanics of dissipative particle dynamics (1995) EPL (Europhys. Lett.), 30 (4), p. 191
  • Español, P., Fluid particle dynamics: A synthesis of dissipative particle dynamics and smoothed particle dynamics (1997) EPL (Europhys. Lett.), 39 (6), p. 605
  • Ayton, G., Voth, G.A., Bridging microscopic and mesoscopic simulations of lipid bilayers (2002) Biophys. J, 83 (6), pp. 3357-3370
  • Yamamoto, S., Maruyama, Y., Hyodo, S.-A., Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules (2002) J. Chem. Phys, 116 (13), pp. 5842-5849
  • Jury, S., Bladon, P., Cates, M., Krishna, S., Hagen, M., Ruddock, N., Warren, P., Simulation of amphiphilic mesophases using dissipative particle dynamics (1999) Phys. Chem. Chem. Phys, 1 (9), pp. 2051-2056
  • Wu, D., Paddison, S.J., Elliott, J.A., Effect of molecular weight on hydrated morphologies of the short-side-chain perfluorosulfonic acid membrane (2009) Macromolecules, 42 (9), pp. 3358-3367
  • Wu, D., Paddison, S.J., Elliott, J.A., Hamrock, S.J., Mesoscale modeling of hydrated morphologies of 3m perfluorosulfonic acid-based fuel cell electrolytes (2010) Langmuir, 26 (17), pp. 14308-14315
  • Dorenbos, G., Morohoshi, K., Modeling gas permeation through membranes by kinetic monte carlo: Applications to h2, o2, and n2 in hydrated nafion® (2011) J. Chem. Phys, 134 (4), p. 044133
  • Yamaki, T., Ozawa, T., Suzuki, A., Terai, T., Maekawa, Y., Water transport in polymer electrolyte membranes investigated by dissipative particle dynamics simulation (2010) ECS Trans, 33 (1), pp. 1067-1078
  • Lee, M.-T., Vishnyakov, A., Neimark, A.V., Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane (2016) J. Chem. Phys, 144 (1), p. 014902
  • Metatla, N., Palato, S., Soldera, A., Change in morphology of fuel cell membranes under shearing (2013) Soft Matter, 9 (46), pp. 11093-11097
  • Dorenbos, G., Morohoshi, K., Percolation thresholds in hydrated amphiphilic polymer membranes (2011) J. Mater. Chem, 21 (35), pp. 13503-13515
  • Wang, C., Paddison, S.J., Mesoscale modeling of hydrated morphologies of sulfonated polysulfone ionomers (2014) Soft Matter, 10 (6), pp. 819-830
  • Dorenbos, G., Dependence of percolation threshold on side chain distribution within amphiphilic polyelectrolyte membranes (2013) RSC Adv, 3 (40), pp. 18630-18642
  • Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., De Vries, A.H., The martini force field: Coarse grained model for biomolecular simulations (2007) J. Phys. Chem. B, 111 (27), pp. 7812-7824
  • Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.-J., The MARTINI coarse-grained force field: Extension to proteins (2008) J. Chem. Theory Comput, 4 (5), pp. 819-834
  • Lopez, C.A., Rzepiela, A.J., De Vries, A.H., Dijkhuizen, L., Hünenberger, P.H., Marrink, S.J., Martini coarse-grained force field: Extension to carbohydrates (2009) J. Chem. Theory Comput, 5 (12), pp. 3195-3210
  • Rossi, G., Monticelli, L., Puisto, S.R., Vattulainen, I., Ala-Nissila, T., Coarse-graining polymers with the MARTINI force-field: Polystyrene as a benchmark case (2011) Soft Matter, 7 (2), pp. 698-708
  • De Jong, D.H., Singh, G., Bennett, W.F.D., Arnarez, C., Wassenaar, T.A., Schäfer, L.V., Periole, X., Marrink, S.J., Improved parameters for the martini coarse-grained protein force field (2013) J. Chem. Theory Comput, 9 (1), pp. 687-697
  • Nawaz, S., Carbone, P., Coarse-graining poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (peo-ppo-peo) block copolymers using the martini force field (2014) J. Phys. Chem. B, 118 (6), pp. 1648-1659
  • Panizon, E., Bochicchio, D., Monticelli, L., Rossi, G., Martini coarse-grained models of polyethylene and polypropylene (2015) J. Phys. Chem. B, 119 (25), pp. 8209-8216
  • Pizzirusso, A., De Nicola, A., Milano, G., Martini coarse-grained model of triton tx-100 in pure dppc monolayer and bilayer interfaces (2016) J. Phys. Chem. B, 120 (16), pp. 3821-3832
  • Van Oosten, B., Harroun, T.A., A martini extension for pseudomonas aeruginosa pao1 lipopolysaccharide (2016) J. Mol. Graphics Modell, 63, pp. 125-133
  • Marrink, S.J., Tieleman, D.P., Perspective on the martini model (2013) Chem. Soc. Rev, 42 (16), pp. 6801-6822
  • Bereau, T., Kremer, K., Automated parametrization of the coarse-grained martini force field for small organic molecules (2015) J. Chem. Theory Comput, 11 (6), pp. 2783-2791
  • Choi, E., Mondal, J., Yethiraj, A., Coarse-grained models for aqueous polyethylene glycol solutions (2014) J. Phys. Chem. B, 118 (1), pp. 323-329
  • DeVane, R., Shinoda, W., Moore, P.B., Klein, M.L., Transferable coarse grain nonbonded interaction model for amino acids (2009) J. Chem. Theory Comput, 5 (8), pp. 2115-2124
  • Periole, X., Cavalli, M., Marrink, S.-J., Ceruso, M.A., Combining an elastic network with a coarse-grained molecular force field: Structure dynamics, and intermolecular recognition (2009) J. Chem. Theory Comput, 5 (9), pp. 2531-2543
  • Maerzke, K.A., Siepmann, J.I., Transferable potentials for phase equilibria-coarse-grain description for linear alkanes (2011) J. Phys. Chem. B, 115 (13), pp. 3452-3465
  • Shelley, J.C., Shelley, M.Y., Reeder, R.C., Bandyopadhyay, S., Klein, M.L., A coarse grain model for phospholipid simulations (2001) J. Phys. Chem. B, 105 (19), pp. 4464-4470
  • Wu, Z., Cui, Q., Yethiraj, A., A new coarse-grained model for water: The importance of electrostatic interactions (2010) J. Phys. Chem. B, 114 (32), pp. 10524-10529
  • Bock, H., Gubbins, K.E., Klapp, S.H.L., Coarse graining of nonbonded degrees of freedom (2007) Phys. Rev. Lett, 98 (26), p. 267801
  • Darre, L., Machado, A.M.R., Dans, P.D., Herrera, F.E., Pantano, S., Another coarse grain model for aqueous solvation: Wat four? (2010) J Chem. Theory Comput, 6 (12), pp. 3793-3807
  • Eriksson, A., Jacobi, M.N., Nyström, J., Tunstrøm, K., On the microscopic foundation of dissipative particle dynamics (2009) EPL (Europhys. Lett.), 86 (4), p. 44001
  • Molinero, V., Moore, E.B., Water modeled as an intermediate element between carbon and silicon (2009) J. Phys. Chem. B, 113 (13), pp. 4008-4016
  • Stillinger, F.H., Weber, T.A., Computer-simulation of local order in condensed phases of silicon (1985) Phys. Rev. B: Condens. Matter Mater. Phys, 31 (8), pp. 5262-5271
  • Lu, J., Qiu, Y., Baron, R., Tip4p-ew, spc/e, and tip3p to monatomic anisotropic water models using relative entropy minimization (2005) J. Chem. Theory Comput, 2014 (9), pp. 4104-4120
  • Lu, J., Chakravarty, C., Molinero, V., Relationship between the line of density anomaly and the lines of melting, crystallization, cavitation, and liquid spinodal in coarse-grained water models (2016) J. Chem. Phys, 144 (23), p. 234507
  • Moore, E.B., Molinero, V., Structural transformation in supercooled water controls the crystallization rate of ice (2011) Nature, 479 (7374), pp. 506-508
  • Song, B., Molinero, V., Thermodynamic signatures of waterdriven methane-methane attraction in coarse-grained mW water (2013) J. Chem. Phys, 139, p. 054511
  • Matysiak, S., Das, P., Effects of sequence and solvation on the temperature-pressure conformational landscape of proteinlike heteropolymers (2013) Phys. Rev. Lett, 111 (5), p. 058103
  • Jacobson, L.C., Hujo, W., Molinero, V., Amorphous precursors in the nucleation of clathrate hydrates (2010) J. Am. Chem. Soc, 132 (33), pp. 11806-11811
  • Jacobson, L.C., Molinero, V., A methane-water model for coarse-grained simulations of solutions and clathrate hydrates (2010) J. Phys. Chem. B, 114 (21), pp. 7302-7311
  • De La Llave, E., Molinero, V., Scherlis, D.A., Role of confinement and surface affinity on filling mechanisms and sorption hysteresis of water in nanopores (2012) J. Phys. Chem. C, 116 (2), pp. 1833-1840
  • Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A., Sorption isotherms of water in nanopores: Relationship between hydropohobicity (2014) Adsorption Pressure, and Hysteresis. J. Phys. Chem. C, 118 (29), pp. 16290-16300
  • Lupi, L., Hudait, A., Molinero, V., Heterogeneous nucleation of ice at carbon surfaces (2014) J. Am. Chem. Soc, 136 (8), pp. 3156-3164
  • Lupi, L., Molinero, V., Does hydrophilicity of carbon particles improve their ice nucleation ability? (2014) J Phys. Chem. A, 118 (35), pp. 7330-7337
  • Xu, L., Molinero, V., Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: Thermodynamics and kinetics (2010) J. Phys. Chem. B, 114 (21), pp. 7320-7328
  • Baron, R., Molinero, V., Water-driven cavity-ligand binding: Comparison of thermodynamic signatures from coarse-grained and atomic-level simulations (2012) J. Chem. Theory Comput, 8 (10), pp. 3696-3704
  • Factorovich, M.H., Molinero, V., Scherlis, D.A., Hydrogen-bond heterogeneity boosts hydrophobicity of solid interfaces (2015) J. Am. Chem. Soc, 137 (33), pp. 10618-10623
  • Qiu, Y., Molinero, V., Morphology of liquid-liquid phase separated aerosols (2015) J. Am. Chem. Soc, 137 (33), pp. 10642-10651
  • Holten, V., Limmer, D.T., Molinero, V., Anisimov, M.A., Nature of the anomalies in the supercooled liquid state of the mw model of water (2013) J. Chem. Phys, 138 (17), p. 174501
  • Moore, E.B., Molinero, V., Growing correlation length in supercooled water (2009) J. Chem. Phys, 130 (24), p. 244505
  • Factorovich, M.H., Molinero, V., Scherlis, D.A., A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems (2014) J. Chem. Phys, 140 (6), p. 064111
  • Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor pressure of water nanodroplets (2014) J. Am. Chem. Soc, 136 (12), pp. 4508-4514
  • De La Llave, E., Molinero, V., Scherlis, D.A., Water filling of hydrophilic nanopores (2010) J. Chem. Phys, 133 (3), p. 034513
  • Moore, E.B., Molinero, V., Is it cubic? Ice crystallization from deeply supercooled water (2011) Phys. Chem. Chem. Phys, 13, pp. 20008-20016
  • Hudait, A., Qiu, S., Lupi, L., Molinero, V., Free energy contributions and structural characterization of stacking disordered ices (2016) Phys. Chem. Chem. Phys, 18 (14), pp. 9544-9553
  • González Solveyra, E., De La Llave, E., Scherlis, D.A., Molinero, V., Melting and crystallization of ice in partially filled nanopores (2011) J. Phys. Chem. B, 115 (48), pp. 14196-14204
  • Lupi, L., Kastelowitz, N., Molinero, V., Vapor deposition of water on graphene surfaces: From amorphous water to bilayer ice to ice i crystals (2014) J. Chem. Phys, 141, p. 18C508
  • Li, T., Donadio, D., Russo, G., Galli, G., Homogeneous ice nucleation from supercooled water (2011) Phys. Chem. Chem. Phys, 13 (44), pp. 19807-19813
  • Bullock, G., Molinero, V., Low-density liquid water is the mother of ice: On the relation between mesostructure thermodynamics and ice crystallization in solutions (2014) Faraday Discuss, 167, pp. 371-388
  • Johnston, J.C., Kastelowitz, N., Molinero, V., Liquid to quasicrystal transition in bilayer water (2010) J. Chem. Phys, 133, p. 154516
  • Kastelowitz, N., Johnston, J.C., Molinero, V., The anomalously high melting temperature of bilayer ice (2010) J. Chem. Phys, 132 (12), p. 124511
  • Nguyen, A.H., Jacobson, L.C., Molinero, V., Structure of the clathrate/solution interface and mechanism of cross-nucleation of clathrate hydrates (2012) J. Phys. Chem. C, 116 (37), pp. 19828-19838
  • Jacobson, L.C., Molinero, V., Can amorphous nuclei grow crystalline clathrates? the size and crystallinity of critical clathrate nuclei (2011) J. Am. Chem. Soc, 133 (16), pp. 6458-6463
  • Jacobson, L.C., Matsumoto, M., Molinero, V., Order parameters for the multistep crystallization of clathrate hydrates (2011) J. Chem. Phys, 135 (7), p. 074501
  • Jabes, S.B., Nayar, D., Dhabal, D., Molinero, V., Chakravarty, C., Water and other tetrahedral liquids: Order, anomalies and solvation (2012) J. Phys.: Condens. Matter, 24 (28), p. 284116
  • Singh, M., Dhabal, D., Nguyen, A.H., Molinero, V., Chakravarty, C., Triplet correlations dominate the transition from simple to tetrahedral liquids (2014) Phys. Rev. Lett, 112, p. 147801
  • Hujo, W., Jabes, B.S., Rana, V.K., Chakravarty, C., Molinero, V., The rise and fall of anomalies in tetrahedral liquids (2011) J. Stat. Phys, 145 (2), pp. 293-312
  • Jacobson, L.C., Hujo, W., Molinero, V., Nucleation pathways of clathrate hydrates: Effect of guest size and solubility (2010) J. Phys. Chem. B, 114 (43), pp. 13796-13807
  • Jacobson, L.C., Hujo, W., Molinero, V., Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water (2009) J. Phys. Chem. B, 113 (30), pp. 10298-10307
  • Nguyen, A.H., Molinero, V., Stability and metastability of bromine clathrate polymorphs (2013) J. Phys. Chem. B, 117, pp. 6330-6338
  • Nguyen, A.H., Molinero, V., Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The chill+ algorithm J. Phys. Chem. B, 2015 (29), pp. 9369-9376
  • Nguyen, A.H., Koc, M.A., Shepherd, T.D., Molinero, V., Structure of the ice-clathrate interface (2015) J. Phys. Chem. C, 119 (8), pp. 4104-4117
  • Limmer, D.T., Chandler, D., Theory of amorphous ices (2014) Proc. Natl. Acad. Sci. U. S. A, 111 (26), pp. 9413-9418
  • Le, L., Molinero, V., Nanophase segregation in supercooled aqueous solutions and their glasses driven by the polyamorphism of water (2011) J. Phys. Chem. A, 115 (23), pp. 5900-5907
  • Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., The missing term in effective pair potentials (1987) J. Phys. Chem, 91 (24), pp. 6269-6271
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys, 79 (2), pp. 926-935
  • Knight, C., Lindberg, G.E., Voth, G.A., Multiscale reactive molecular dynamics (2012) J. Chem. Phys, 137 (22), p. 22A525
  • DeMille, R.C., Molinero, V., Coarse-grained ions without charges: Reproducing the solvation structure of NaCl in water using short-ranged potentials (2009) J. Chem. Phys, 131 (3), p. 034107
  • Carré, A., Berthier, L., Horbach, J., Ispas, S., Kob, W., Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study (2007) J. Chem. Phys, 127 (11), p. 114512
  • Sirkin, P.Y., Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor pressure of aqueous solutions of electrolytes reproduced with coarse-grained models without electrostatics (2016) J. Chem. Theory Comput, 12 (6), pp. 2942-2949
  • Demille, R.C., Molinero, V., A coarsegrained model of DNA with explicit solvation by water and ions (2011) J. Phys. Chem. B, 115 (1), pp. 132-142
  • Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general amber force field (2004) J. Comput. Chem, 25 (9), pp. 1157-1174
  • Abascal, J.L.F., Vega, C., A general purpose model for the condensed phases of water: Tip4p/2005 (2005) J. Chem. Phys, 123 (23), p. 234505
  • Ghanem, R.G., Spanos, P.D., (2003) Stochastic Finite Elements: A Spectral Approach, , Dover Publications: Mineola, NY
  • Xiu, D., Karniadakis, G.E., Modeling uncertainty in flow simulations via generalized polynomial chaos (2003) J. Comput. Phys, 187 (1), pp. 137-167
  • Maitre, O.L., Knio, O.M., (2010) Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, , Springer: Netherlands
  • Plimpton, S.J., Fast parallel algorithms for short-range molecular dynamics (1995) J. Comput. Phys, 117, pp. 1-19
  • Riniker, S., Allison, J.R., Van Gunsteren, W.F., On developing coarse-grained models for biomolecular simulation: A review (2012) Phys. Chem. Chem. Phys, 14 (36), pp. 12423-12430
  • Mullinax, J.W., Noid, W.G., Extended ensemble approach for deriving transferable coarse-grained potentials (2009) J. Chem. Phys, 131 (10), p. 104110
  • Das, A., Lu, L., Andersen, H.C., Voth, G.A., The multiscale coarse-graining method. X. Improved algorithms for constructing coarse-grained potentials for molecular systems (2012) J. Chem. Phys, 136, p. 194115
  • Mei, J., Davenport, J.W., Fernando, G.W., Analytic embeddedatom potentials for fcc metals: Application to liquid and solid copper (1991) Phys. Rev. B: Condens. Matter Mater. Phys, 43 (6), pp. 4653-4658
  • Rizzi, F., Najm, H.N., Debusschere, B.J., Sargsyan, K., Salloum, M., Adalsteinsson, H., Knio, O.M., Uncertainty quantification in md simulations part i: Forward propagation (2012) Multiscale Model. Simul, 10 (4), pp. 1428-1459
  • Rizzi, F., Najm, H.N., Debusschere, B.J., Sargsyan, K., Salloum, M., Adalsteinsson, H., Knio, O.M., Uncertainty quantification in md simulations part II: Bayesian inference of force-field parameters (2012) Multiscale Model. Simul, 10 (4), pp. 1460-1492
  • Rizzi, F., Jones, R.E., Debusschere, B.J., Knio, O.M., Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. I. Sensitivity to physical parameters of the pore (2013) J. Chem. Phys, 138 (19), p. 194104
  • Rizzi, F., Jones, R.E., Debusschere, B.J., Knio, O.M., Uncertainty quantification in md simulations of concentration driven ionic flow through a silica nanopore II uncertain potential parameters (2013) J. Chem. Phys, 138 (19), p. 194105
  • Jacobson, L.C., Kirby, R.M., Molinero, V., How short is too short for the interactions of a water potential? Exploring the parameter space of a coarse-grained water model using uncertainty quantification (2014) J. Phys. Chem. B, 118, p. 8190
  • Davtyan, A., Dama, J.F., Voth, G.A., Andersen, H.C., Dynamic force matching: A method for constructing dynamical coarsegrained models with realistic time dependence (2015) J. Chem. Phys, 142 (15), p. 154104
  • White, R.P., Lipson, J.E.G., Free volume cohesive energy density and internal pressure as predictors of polymer miscibility (2014) Macromolecules, 47 (12), pp. 3959-3968
  • Lindenbaum, S., Boyd, G.E., Osmotic and activity coefficients for the symmetrical tetraalkyl ammonium halides in aqueous solution at 25 (1964) J. Phys. Chem, 68 (4), pp. 911-917
  • Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A., A wellbehaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model (1993) J. Phys. Chem, 97 (40), pp. 10269-10280
  • Cornell, W.D., Cieplak, P., Bayly, C.I., Kollmann, P.A., Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation (1993) J. Am. Chem. Soc, 115 (21), pp. 9620-9631
  • Wang, J., Wang, W., Kollman, P.A., Case, D.A., Automatic atom type and bond type perception in molecular mechanical calculations (2006) J. Mol. Graphics Modell, 25 (2), pp. 247-260
  • Joung, I.S., Cheatham, T.E., Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations (2008) J. Phys. Chem. B, 112 (30), pp. 9020-9041
  • Vishnyakov, A., Neimark, A.V., Self-assembly in nafion membranes upon hydration: Water mobility and adsorption isotherms (2014) J. Phys. Chem. B, 118 (38), pp. 11353-11364
  • Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Weiner, P., A new force field for molecular mechanical simulation of nucleic acids and proteins (1984) J. Am. Chem. Soc, 106 (3), pp. 765-784
  • Jorgensen, W.L., Madura, J.D., Swenson, C.J., Optimized intermolecular potential functions for liquid hydrocarbons (1984) J. Am. Chem. Soc, 106 (22), pp. 6638-6646
  • Jacobson, L.C., Molinero, V., A methane-water model for coarse-grained simulations of solutions and clathrate hydrates (2010) J. Phys. Chem. B, 114 (21), pp. 7302-7311
  • Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S., Thermodynamic properties of aqueous electrolyte solutions. 1.Vapor pressure of aqueous solutions of lithium chloride lithium bromide and lithium iodide (1990) J. Chem. Eng. Data, 35 (2), pp. 166-168
  • Olynyk, P., Gordon, A.R., The vapor pressure of aqueous solutions of sodium chloride at 20, 25 and 30 for concentrations from 2 molal to saturation (1943) J. Am. Chem. Soc, (2), pp. 224-226
  • Stokes, R.H., Robinson, R.A., Ionic hydration and activity in electrolyte solutions (1948) J. Am. Chem. Soc, 70 (5), pp. 1870-1878
  • Wagner, J.W., Dama, J.F., Durumeric, A.E.P., Voth, G.A., On the representability problem and the physical meaning of coarsegrained models (2016) J. Chem. Phys, 145 (4), p. 044108
  • Marx, D., Chandra, A., Tuckerman, M.E., Aqueous basic solutions: Hydroxide solvation, structural diffusion, and comparison to the hydrated proton (2010) Chem. Rev, 110 (4), pp. 2174-2216
  • Mancinelli, R., Botti, A., Bruni, F., Ricci, M.A., Soper, A.K., Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker (2007) J. Phys. Chem. B, 111 (48), pp. 13570-13577
  • Botti, A., Bruni, F., Imberti, S., Ricci, M.A., Soper, A.K., Solvation of hydroxyl ions in water (2003) J. Chem. Phys, 119 (10), pp. 5001-5004
  • Werber, J.R., Osuji, C.O., Elimelech, M., Materials for nextgeneration desalination and water purification membranes (2016) Nat. Rev. Mater, 1, p. 16018
  • Schwenzer, B., Zhang, J., Kim, S., Li, L., Liu, J., Yang, Z., Membrane development for vanadium redox flow batteries (2011) ChemSusChem, 4 (10), pp. 1388-1406
  • Prifti, H., Parasuraman, A., Winardi, S., Lim, T.M., Skyllas-Kazacos, M., Membranes for redox flow battery applications (2012) Membranes, 2 (2), p. 275
  • Jiang, B., Yu, L., Wu, L., Mu, D., Liu, L., Xi, J., Qiu, X., Insights into the impact of the nafion membrane pretreatment process on vanadium flow battery performance (2016) ACS Appl. Mater. Interfaces, 8 (19), pp. 12228-12238
  • Winsberg, J., Janoschka, T., Morgenstern, S., Hagemann, T., Muench, S., Hauffman, G., Gohy, J.-F., Schubert, U.S., Poly(tempo)/zinc hybrid-flow battery: A novel "green," high voltage, and safe energy storage system (2016) Adv. Mater, 28 (11), pp. 2238-2243

Citas:

---------- APA ----------
Lu, J., Jacobson, L.C., Perez Sirkin, Y.A. & Molinero, V. (2017) . High-resolution coarse-grained model of hydrated anion-exchange membranes that accounts for hydrophobic and ionic interactions through short-ranged potentials. Journal of Chemical Theory and Computation, 13(1), 245-264.
http://dx.doi.org/10.1021/acs.jctc.6b00874
---------- CHICAGO ----------
Lu, J., Jacobson, L.C., Perez Sirkin, Y.A., Molinero, V. "High-resolution coarse-grained model of hydrated anion-exchange membranes that accounts for hydrophobic and ionic interactions through short-ranged potentials" . Journal of Chemical Theory and Computation 13, no. 1 (2017) : 245-264.
http://dx.doi.org/10.1021/acs.jctc.6b00874
---------- MLA ----------
Lu, J., Jacobson, L.C., Perez Sirkin, Y.A., Molinero, V. "High-resolution coarse-grained model of hydrated anion-exchange membranes that accounts for hydrophobic and ionic interactions through short-ranged potentials" . Journal of Chemical Theory and Computation, vol. 13, no. 1, 2017, pp. 245-264.
http://dx.doi.org/10.1021/acs.jctc.6b00874
---------- VANCOUVER ----------
Lu, J., Jacobson, L.C., Perez Sirkin, Y.A., Molinero, V. High-resolution coarse-grained model of hydrated anion-exchange membranes that accounts for hydrophobic and ionic interactions through short-ranged potentials. J. Chem. Theory Comput. 2017;13(1):245-264.
http://dx.doi.org/10.1021/acs.jctc.6b00874