Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach (Factorovich, M. H. et al. J. Chem. Phys. 2014, 140, 064111) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid-vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion-ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics
Autor:Perez Sirkin, Y.A.; Factorovich, M.H.; Molinero, V.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Quimíca Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires, C1428EHA, Argentina
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Año:2016
Volumen:12
Número:6
Página de inicio:2942
Página de fin:2949
DOI: http://dx.doi.org/10.1021/acs.jctc.6b00291
Título revista:Journal of Chemical Theory and Computation
Título revista abreviado:J. Chem. Theory Comput.
ISSN:15499618
CODEN:JCTCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v12_n6_p2942_PerezSirkin

Referencias:

  • Factorovich, M.H., (2014) J. Chem. Phys., 140, p. 064111
  • Jeon, S.W., Cha, D., Kim, H.S., Kim, Y., Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions (2016) Appl. Energy, 166, pp. 165-173
  • Zhang, R., Khalizov, A., Wang, L., Hu, M., Xu, W., Nucleation and growth of nanoparticles in the atmosphere (2012) Chem. Rev. (Washington, DC, U. S.), 112, pp. 1957-2011
  • Andreae, M.O., The aerosol nucleation puzzle (2013) Science, 339, pp. 911-912
  • Weber, A.Z., Newman, J., Modeling transport in polymer-electrolyte fuel cells (2004) Chem. Rev. (Washington, DC, U. S.), 104, pp. 4679-4726
  • Hammes-Schiffer, S., Soudackov, A.V., Proton-coupled electron transfer in solution, proteins, and electrochemistry (2008) J. Phys. Chem. B, 112, pp. 14108-14123
  • Calle-Vallejo, F., Koper, M.T.C., First-principles computational electrochemistry: Achievements and challenges (2012) Electrochim. Acta, 84, pp. 3-11
  • Burt, R., Birkett, G., Zhao, X.S., A review of molecular modelling of electric double layer capacitors (2014) Phys. Chem. Chem. Phys., 16, pp. 6519-6538
  • Marenich, A.V., Ho, J., Coote, M.L., Cramer, C.J., Truhlar, D.G., Computational electrochemistry: Prediction of liquid-phase reduction potentials (2014) Phys. Chem. Chem. Phys., 16, pp. 15068-15106
  • Carrasco, J., Hodgson, A., Michaelides, A., A molecular perspective of water at metal interfaces (2012) Nat. Mater., 11, pp. 667-674
  • Hammes-Schiffer, S., Proton-coupled electron transfer: Moving together and charging forward (2015) J. Am. Chem. Soc., 137, pp. 8860-8871
  • Orozco, G.A., Moultos, O.A., Jiang, I.G., Economou, H., Panagiotopoulos, A.Z., Molecular simulation of thermodynamic and transport properties for the H2O + NaCl system (2014) J. Chem. Phys., 141, p. 2334507
  • Nouri-Khorasani, A., Malek, K., Malek, A., Mashio, T., Wilkinson, D.P., Eikerling, M.H., Molecular modeling of the proton density distribution in a water-filled slab-like nanopore bounded by Pt oxide and ionomer (2016) Catal. Today, 262, pp. 133-140
  • Moucka, F., Bratko, D., Luzar, A., Salt and water uptake in nanoconfinement under applied electric field: An open ensemble Monte Carlo study (2015) J. Phys. Chem. C, 119, pp. 20416-20425
  • Cao, Z., Peng, Y., Voth, G.A., Ion transport through ultrathin electrolyte under applied voltages (2015) J. Phys. Chem. B, 119, pp. 7516-7521
  • Moucka, F., Bratko, D., Luzar, A., Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation (2015) J. Chem. Phys., 142, p. 124705
  • Jiang, H., Mester, Z., Moultos, O.A., Economou, I.G., Panagiotopoulos, A.Z., Thermodynamic and transport properties of H2O + NaCl from polarizable force fields (2015) J. Chem. Theory Comput., 11, pp. 3802-3810
  • Strauch, H.J., Cummings, P.T., Gibbs ensemble simulation of mixed solvent electrolyte solutions (1993) Fluid Phase Equilib., 86, pp. 147-172
  • Tsai, E.S., Jiang, H., Panagiotopoulos, A.Z., Monte Carlo simulations of H2O-CaCl2 and H2O-CaCl2-CO2 mixtures (2016) Fluid Phase Equilib., 407, pp. 262-268
  • Persson, R., Nordholm, S., Perlovich, G., Lindfors, L., Monte Carlo studies of drug nucleation 1: Formation of crystalline clusters of bicalutamide in water (2011) J. Phys. Chem. B, 115, pp. 3062-3072
  • Jorn, R., Savage, J., Voth, G.A., Proton conduction in exchange membranes across multiple length scales (2012) Acc. Chem. Res., 45, pp. 2002-2010
  • Franco, A.A., Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: Concepts, methods and challenges (2013) RSC Adv., 3, pp. 13027-13058
  • Vishnyakov, A., Neimark, A.V., Self-assembly in nafion membranes upon hydration: Water mobility and adsorption isotherms (2014) J. Phys. Chem. B, 118, pp. 11353-11364
  • Jacobson, L.C., Ren, X., Molinero, V., Assessing the effects of crowding, pore size, and interactions on electro-osmotic drag coefficients (2014) J. Phys. Chem. C, 118, pp. 2093-2103
  • Mognetti, B.M., Virnau, P., Yelash, L., Paul, W., Binder, K., Müller, M., MacDowell, L.G., Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment (2009) J. Chem. Phys., 130, p. 044101
  • Lafitte, T., Avendano, C., Papaioannou, V., Galindo, A., Adjiman, C.S., Jackson, G., Müller, E.A., SAFT-force field for the simulation of molecular fluids: 3. Coarse-grained models of benzene and hetero-group models of n-decylbenzene (2012) Mol. Phys., 110, pp. 1189-1203
  • Stokes, R., Robinson, R., Ionic hydration and activity in electrolyte solutions (1948) J. Am. Chem. Soc., 70, pp. 1870-1878
  • Ally, M., Braunstein, J., BET model for calculating activities of salts and water, molar enthalpies, molar volumes and liquid-solid phase behavior in concentrated electrolyte solutions (1993) Fluid Phase Equilib., 87, pp. 213-236
  • Ally, M.R., Braunstein, J., Statistical mechanics of multilayer adsorption: Electrolyte and water activities in concentrated solutions (1998) J. Chem. Thermodyn., 30, pp. 49-58
  • Economou, I.G., Peters, C.J., De Swaan Arons, J., Water-salt phase equilibria at elevated temperatures and pressures: Model development and mixture predictions (1995) J. Phys. Chem., 99, pp. 6182-6193
  • Gil-Villegas, A., Galindo, A., Whitehead, P.J., Mills, S.J., Jackson, G., Burgess, A.N., Statistical associating fluid theory for chain molecules with attractive potentials of variable range (1997) J. Chem. Phys., 106, pp. 4168-4186
  • Galindo, A., Gil-Villegas, A., Jackson, G., Burgess, A.N., SAFT-VRE: Phase behavior of electrolyte solutions with the statistical associating fluid theory for potentials of variable range (1999) J. Phys. Chem. B, 103, pp. 10272-10281
  • Held, C., Sadowski, G., Modeling aqueous electrolyte solutions. Part 2. Weak electrolytes (2009) Fluid Phase Equilib., 279, pp. 141-148
  • Panagiotopoulos, A., Quirke, N., Stapleton, M., Tildesley, D.J., Phase equilibria by simulation in the Gibbs ensemble: Alternative derivation, generalization and application to mixture and membrane equilibria (1988) Mol. Phys., 63, pp. 527-545
  • Panagiotopoulos, A.Z., Monte Carlo methods for phase equilibria of fluids (2000) J. Phys.: Condens. Mater., 12, p. R25
  • Vorholz, J., Harismiadis, V.I., Panagiotopoulos, A.Z., Rumpf, B., Maurer, G., Molecular simulation of the solubility of carbon dioxide in aqueous solutions of sodium chloride (2004) Fluid Phase Equilib., 226, pp. 237-250
  • Frenkel, D., Smit, B., (2002) Understanding Molecular Simulation, , 2 nd ed. Academic Press: San Diego
  • Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V., Vorontsov-Velyaminov, P., New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles (1992) J. Chem. Phys., 96, pp. 1776-1783
  • Marinari, E., Parisi, G., Simulated tempering: A new Monte Carlo scheme (1992) Europhys. Lett., 19, pp. 451-458
  • Mezei, M., Adaptive umbrella sampling: Self-consistent determination of the non-Boltzmann bias (1987) J. Comput. Phys., 68, pp. 237-248
  • Swendsen, R.H., Diggs, B., Wang, J.S., Li, S., Genovese, C., Kadane, J.B., Transition matrix Monte Carlo (1999) Int. J. Mod. Phys. C, 10, pp. 1563-1569
  • Factorovich, M.H., Molinero, V., Scherlis, D.A., A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems (2014) J. Chem. Phys., 140, p. 064111
  • Factorovich, M.H., Molinero, V., Scherlis, D.A., Vapor pressure of water nanodroplets (2014) J. Am. Chem. Soc., 136, pp. 4508-4514
  • Molinero, V., Moore, E.B., Water modeled as an intermediate element between carbon and silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016
  • Stillinger, F.H., Weber, T.A., Computer simulation of local order in condensed phases of silicon (1985) Phys. Rev. B, 31, pp. 5262-5271
  • Jacobson, L.C., Kirby, R.M., Molinero, V., How short is too short for the interactions of a water potential? Exploring the parameter space of a coarse-grained water model using uncertainty quantification (2014) J. Phys. Chem. B, 118, pp. 8190-8202
  • Lu, J., Qiu, Y., Baron, R., Molinero, V., Coarse-graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to monatomic anisotropic water models using relative entropy minimization (2014) J. Chem. Theory Comput., 10, pp. 4104-4120
  • Lupi, L., Kastelowitz, N., Molinero, V., Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water (2014) J. Chem. Phys., 141, p. 18C508
  • Moore, E.B., Molinero, V., Structural transformation in supercooled water controls the crystallization rate of ice (2011) Nature, 479, pp. 506-508
  • Jacobson, L.C., Hujo, W., Molinero, V., Amorphous precursors in the nucleation of clathrate hydrates (2010) J. Am. Chem. Soc., 132, pp. 11806-11811
  • Gonzalez Solveyra, E., De La Llave, E., Molinero, V., Soler-Illia, G.J.A.A., Scherlis, D.A., Structure, dynamics, and phase behavior of water in TiO2 nanopores (2013) J. Phys. Chem. C, 117, pp. 3330-3342
  • Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A., Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis (2014) J. Phys. Chem. C, 118, pp. 16290-16300
  • Le, L., Molinero, V., Nanophase segregation in supercooled aqueous solutions and their glasses driven by the polyamorphism of water (2011) J. Phys. Chem. A, 115, pp. 5900-5907
  • DeMille, R.C., Molinero, V., Coarse-grained ions without charges: Reproducing the solvation structure of NaCl in water using short-ranged potentials (2009) J. Chem. Phys., 131, p. 034107
  • Bullock, G., Molinero, V., Low-density liquid water is the mother of ice: On the relation between mesostructure, thermodynamics and ice crystallization in solutions (2013) Faraday Discuss., 167, pp. 371-388
  • Jacobson, L., Hujo, W., Molinero, V., Nucleation pathways of clathrate hydrates: Effect of guest size and solubility (2010) J. Phys. Chem. B, 114, pp. 13796-13807
  • Jacobson, L.C., Hujo, W., Molinero, V., Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water (2009) J. Phys. Chem. B, 113, pp. 10298-10307
  • Johnston, J.C., Molinero, V., Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures (2012) J. Am. Chem. Soc., 134, pp. 6650-6659
  • Moore, E.B., Allen, J.T., Molinero, V., Liquid-ice coexistence below the melting temperature for water confined in hydrophilic and hydrophobic nanopores (2012) J. Phys. Chem. C, 116, pp. 7507-7514
  • Qiu, Y., Molinero, V., Morphology of liquid-liquid phase separated aerosols (2015) J. Am. Chem. Soc., 137, pp. 10642-10651
  • Xu, L., Molinero, V., Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: Thermodynamics and kinetics (2010) J. Phys. Chem. B, 114, pp. 7320-7328
  • Xu, L., Molinero, V., Is there a liquid-liquid transition in confined water? (2011) J. Phys. Chem. B, 115, pp. 14210-14216
  • Bullock, G., Molinero, V., Low-density liquid water is the mother of ice: On the relation between mesostructure, thermodynamics and ice crystallization in solutions (2013) Faraday Discuss., 167, pp. 371-388
  • Hudait, A., Molinero, V., Ice crystallization in ultrafine water-salt aerosols: Nucleation, ice-solution equilibrium, and internal structure (2014) J. Am. Chem. Soc., 136, pp. 8081-8093
  • Plimpton, S., Fast parallel algorithms for short-range molecular dynamics (1995) J. Comput. Phys., 117, pp. 1-19
  • Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S., Thermodynamic properties of aqueous electrolyte solutions. 1. Vapor pressure of aqueous solutions of lithium chloride, lithium bromide, and lithium iodide (1990) J. Chem. Eng. Data, 35, pp. 166-168
  • Tobias, D.J., Stern, A.C., Baer, M.D., Levin, Y., Mundy, C.J., Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces (2013) Annu. Rev. Phys. Chem., 64, pp. 339-359
  • Olynyk, P., Gordon, A.R., The vapor pressure of aqueous solutions of sodium chloride at 20, 25 and 30° for concentrations from 2 molal to saturation (1943) J. Am. Chem. Soc., 65, pp. 224-226
  • Lamoureux, G., Roux, B., Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field (2006) J. Phys. Chem. B, 110, pp. 3308-3322
  • http://webbook.nist.gov, NIST. (accessed October 8, 2015); Robinson, R.A., Stokes, R.H., (2002) Electrolyte Solutions, pp. 24-39. , 2 nd ed. Dover: Mineola, NY
  • Fatemi, S.M., Foroutan, M., Molecular dynamics simulations of freezing behavior of pure water and 14% water-NaCl mixture using the coarse-grained model (2016) Iran J. Chem. Chem. Eng., 35, pp. 1-10
  • Pitzer, K.S., Thermodynamics of electrolytes. I. Theoretical basis and general equations (1973) J. Phys. Chem., 77, pp. 268-277
  • Pitzer, K.S., Mayorga, G., Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent (1973) J. Phys. Chem., 77, pp. 2300-2308
  • Cohen, M.D., Flagan, R.C., Seinfeld, J.H., Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions (1987) J. Phys. Chem., 91, pp. 4563-4574

Citas:

---------- APA ----------
Perez Sirkin, Y.A., Factorovich, M.H., Molinero, V. & Scherlis, D.A. (2016) . Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics. Journal of Chemical Theory and Computation, 12(6), 2942-2949.
http://dx.doi.org/10.1021/acs.jctc.6b00291
---------- CHICAGO ----------
Perez Sirkin, Y.A., Factorovich, M.H., Molinero, V., Scherlis, D.A. "Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics" . Journal of Chemical Theory and Computation 12, no. 6 (2016) : 2942-2949.
http://dx.doi.org/10.1021/acs.jctc.6b00291
---------- MLA ----------
Perez Sirkin, Y.A., Factorovich, M.H., Molinero, V., Scherlis, D.A. "Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics" . Journal of Chemical Theory and Computation, vol. 12, no. 6, 2016, pp. 2942-2949.
http://dx.doi.org/10.1021/acs.jctc.6b00291
---------- VANCOUVER ----------
Perez Sirkin, Y.A., Factorovich, M.H., Molinero, V., Scherlis, D.A. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics. J. Chem. Theory Comput. 2016;12(6):2942-2949.
http://dx.doi.org/10.1021/acs.jctc.6b00291