Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The hybrid simulation tools (QM/MM) evolved into a fundamental methodology for studying chemical reactivity in complex environments. This paper presents an implementation of electronic structure calculations based on density functional theory. This development is optimized for performing hybrid molecular dynamics simulations by making use of graphic processors (GPU) for the most computationally demanding parts (exchange-correlation terms). The proposed implementation is able to take advantage of modern GPUs achieving acceleration in relevant portions between 20 to 30 times faster than the CPU version. The presented code was extensively tested, both in terms of numerical quality and performance over systems of different size and composition. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:GPU accelerated implementation of density functional theory for hybrid QM/MM simulations
Autor:Nitsche, M.A.; Ferreria, M.; Mocskos, E.E.; Lebrero, M.C.G.
Filiación:Departamento de Computación, FCEN, UBA, Buenos Aires C1428EGA, Argentina
Centro de Simulación Computacional Para Aplicaciones Tecnológicas, CSC, CONICET, Buenos Aires C1425FQD, Argentina
Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET, Buenos Aires C1425FQD, Argentina
Año:2014
Volumen:10
Número:3
Página de inicio:959
Página de fin:967
DOI: http://dx.doi.org/10.1021/ct400308n
Título revista:Journal of Chemical Theory and Computation
Título revista abreviado:J. Chem. Theory Comput.
ISSN:15499618
CODEN:JCTCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v10_n3_p959_Nitsche

Referencias:

  • Yasuda, K., (2008) J. Comput. Chem., 29, pp. 334-342
  • Vogt, L., Olivares-Amaya, R., Kermes, S., Shao, Y., Amador-Bedolla, C., Aspuru-Guzik, A., (2008) J. Phys. Chem. A, 112, pp. 2049-2057
  • Ufimtsev, I.S., Martinez, T.J., (2008) J. Chem. Theory Comput., 4, pp. 222-231
  • Genovese, L., Ospici, M., Deutsch, T., Méhaut, J., Neelov, A., Goedecker, S., (2009) J. Chem. Phys., 131, p. 034103
  • Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G., Schulten, K., (2007) J. Comput. Chem., 28, pp. 2618-2640
  • Anderson, A.G., Schröder, P., (2007) Comput. Phys. Commun., 177, pp. 298-306
  • Wilkinson, K., Skylaris, C.-K., (2013) J. Comput. Chem., 34, pp. 2446-2459
  • TeraChem, , http://www.petachem.com, v1.0. (accessed February 17 2014)
  • Yasuda, K., (2008) J. Chem. Theory Comput., 4, pp. 1230-1236
  • Capece, L., Marti, M., Crespo, A., Doctorovich, F., Estrin, D., (2006) J. Am. Chem. Soc., 128, pp. 12455-12461
  • Crespo, A., Scherlis, D., Martí, M., Ordejón, P., Roitberg, A., Estrin, D., (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Crespo, A., Martí, M., Estrin, D., Roitberg, A., (2005) J. Am. Chem. Soc., 127, pp. 6940-6941
  • Crespo, A., Marti, M., Kalko, S., Morreale, A., Orozco, M., Gelpi, J., Luque, F., Estrin, D., (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Friesner, R., Guallar, V., (2005) Annu. Rev. Phys. Chem., 56, pp. 389-427
  • Marti, M., Crespo, A., Bari, S., Doctorovich, F., Estrin, D., (2004) J. Phys. Chem. B, 108, pp. 18073-18080
  • Ridder, L., Harvey, J., Rietjens, I., Vervoort, J., Mulholland, A., (2003) J. Phys. Chem. B, 107, pp. 2118-2126
  • Sproviero, E., Gascón, J., McEvoy, J., Brudvig, G., Batista, V., (2006) J. Chem. Theory Comput., 2, pp. 1119-1134
  • Estrin, D., Corongiu, G., Clementi, E., (1993) Methods and Techniques in Computational Chemistry, , Clementi, E. STEF: Cagliari, Italy, Chapter 12
  • Yasuda, K., (2008) J Chem. Theory Comput., 4, pp. 1230-1236
  • Case, D., (2012) AMBER 12, , University of California, San Francisco: San Francisco, CA
  • Kohn, W., Sham, L.J., (1965) Phys. Rev., 140, pp. A1133-A1138
  • Becke, A.D., (1988) J. Chem. Phys., 88, pp. 2547-2553
  • Stratmann, R., Scuseria, G.E., Frisch, M.J., (1996) Chem. Phys. Lett., 257, pp. 213-223
  • Götz, A.W., Clark, M.A., Walker, R.C., (2014) J. Comput. Chem., 35, pp. 95-108
  • Zeida, A., Lebrero, M.C.G., Radi, R., Trujillo, M., Estrin, D.A., (2013) Arch. Biochem. Biophys., 539, pp. 81-86
  • (2014) TeraChem Performance Analysis, , http://www.petachem.com/performance.html, (accessed February 17)
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868
  • Lebedev, V.I., (1975) USSR Comput. Math. Math. Phys., 15, pp. 44-51
  • Lebedev, V.I., (1976) USSR Comput. Math. Math. Phys., 16, pp. 10-24
  • (2014), https://developer.nvidia.com/cuBLAS, The NVIDIA CUDA Basic Linear Algebra Subroutines. (accessed February 17); CUDA Toolkit 5.0 Performance Report, , https://developer.nvidia.com/sites/default/files/akamai/cuda/files/ CUDACUDA_5.0Math_Libraries_Performance.pdf, (accessed February 17 2014)
  • Tsuda, T., Toyoshima, C., (2009) EMBO J., p. 1782

Citas:

---------- APA ----------
Nitsche, M.A., Ferreria, M., Mocskos, E.E. & Lebrero, M.C.G. (2014) . GPU accelerated implementation of density functional theory for hybrid QM/MM simulations. Journal of Chemical Theory and Computation, 10(3), 959-967.
http://dx.doi.org/10.1021/ct400308n
---------- CHICAGO ----------
Nitsche, M.A., Ferreria, M., Mocskos, E.E., Lebrero, M.C.G. "GPU accelerated implementation of density functional theory for hybrid QM/MM simulations" . Journal of Chemical Theory and Computation 10, no. 3 (2014) : 959-967.
http://dx.doi.org/10.1021/ct400308n
---------- MLA ----------
Nitsche, M.A., Ferreria, M., Mocskos, E.E., Lebrero, M.C.G. "GPU accelerated implementation of density functional theory for hybrid QM/MM simulations" . Journal of Chemical Theory and Computation, vol. 10, no. 3, 2014, pp. 959-967.
http://dx.doi.org/10.1021/ct400308n
---------- VANCOUVER ----------
Nitsche, M.A., Ferreria, M., Mocskos, E.E., Lebrero, M.C.G. GPU accelerated implementation of density functional theory for hybrid QM/MM simulations. J. Chem. Theory Comput. 2014;10(3):959-967.
http://dx.doi.org/10.1021/ct400308n