Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

α-synuclein is a major component of intraneuronal protein aggregates constituting a distinctive feature of Parkinson disease. To date, fluorescence imaging of dynamic processes leading to such amyloid deposits in living cells has not been feasible. To address this need, we generated a recombinant α-synuclein (α-synuclein-C4) bearing a tetracysteine target for fluorogenic biarsenical compounds. The biophysical, biochemical and aggregation properties of α-synuclein-C4 matched those of the wild-type protein in vitro and in living cells. We observed aggregation of α-synuclein-C4 transfected or microinjected into cells, particularly under oxidative stress conditions. Fluorescence resonance energy transfer (FRET) between FlAsH and ReAsH confirmed the close association of fibrillized α-synuclein-C4 molecules. α-synuclein-C4 offers the means for directly probing amyloid formation and interactions of α-synuclein with other proteins in living cells, the response to cellular stress and screening drugs for Parkinson disease.

Registro:

Documento: Artículo
Título:Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein
Autor:Roberti, M.J.; Bertoncini, C.W.; Klement, R.; Jares-Erijman, E.A.; Jovin, T.M.
Filiación:Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:alpha synuclein; amyloid; amyloid; cysteine; fluorescent dye; hybrid protein; reactive oxygen metabolite; article; cell stress; fluorescence analysis; fluorescence resonance energy transfer; oxidative stress; Parkinson disease; priority journal; protein aggregation; protein protein interaction; chemistry; confocal microscopy; Escherichia coli; fluorescence microscopy; fluorescence resonance energy transfer; gene vector; genetic procedures; genetic transfection; genetics; human; metabolism; methodology; tumor cell line; alpha-Synuclein; Amyloid; Biosensing Techniques; Cell Line, Tumor; Cysteine; Escherichia coli; Fluorescence Resonance Energy Transfer; Fluorescent Dyes; Genetic Vectors; Humans; Microscopy, Confocal; Microscopy, Fluorescence; Oxidative Stress; Reactive Oxygen Species; Recombinant Fusion Proteins; Transfection
Año:2007
Volumen:4
Número:4
Página de inicio:345
Página de fin:351
DOI: http://dx.doi.org/10.1038/nmeth1026
Título revista:Nature Methods
Título revista abreviado:Nat. Methods
ISSN:15487091
CAS:alpha synuclein, 154040-18-3; amyloid, 11061-24-8; cysteine, 4371-52-2, 52-89-1, 52-90-4; alpha-Synuclein; Amyloid; Cysteine, 52-90-4; Fluorescent Dyes; Reactive Oxygen Species; Recombinant Fusion Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15487091_v4_n4_p345_Roberti

Referencias:

  • Dobson, C.M., Protein folding and misfolding (2003) Nature, 426, pp. 884-890
  • Dawson, T.M., Dawson, V.L., Molecular pathways of neurodegeneration in Parkinson's disease (2003) Science, 302, pp. 819-822
  • Shults, Lewy bodies, C.W., (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 1661-1668
  • Reixach, N., Deechongkit, S., Jiang, X., Kelly, J.W., Buxbaum, J.N., Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 2817-2822
  • Lashuel, H.A., Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils (2002) J. Mol. Biol, 322, pp. 1089-1102
  • Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O.M., Sudhof, T.C., Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration (2005) Cell, 123, pp. 383-396
  • Bertoncini, C.W., Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 1430-1435
  • Uversky, V.N., Li, J., Fink, A.L., Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure (2001) J. Biol. Chem, 276, pp. 44284-44296
  • Hoyer, W., Dependence of alpha-synuclein aggregate morphology on solution conditions (2002) J. Mol. Biol, 322, pp. 383-393
  • Stefanova, N., Klimaschewski, L., Poewe, W., Wenning, G.K., Reindl, M., Glial cell death induced by overexpression of alpha-synuclein (2001) J. Neurosci. Res, 65, pp. 432-438
  • Sherer, T.B., An in vitro model of Parkinson's disease: Linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage (2002) J. Neurosci, 22, pp. 7006-7015
  • Vila, M., Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP (2000) J. Neurochem, 74, pp. 721-729
  • Lee, H.J., Shin, S.Y., Choi, C., Lee, Y.H., Lee, S.J., Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors (2002) J. Biol. Chem, 277, pp. 5411-5417
  • Bence, N.F., Sampat, R.M., Kopito, R.R., Impairment of the ubiquitin-proteasome system by protein aggregation (2001) Science, 292, pp. 1552-1555
  • Kim, S., Nollen, E.A., Kitagawa, K., Bindokas, V.P., Morimoto, R.I., Polyglutamine protein aggregates are dynamic (2002) Nat. Cell Biol, 4, pp. 826-831
  • Outeiro, T.F., Lindquist, S., Yeast cells provide insight into alpha-synuclein biology and pathobiology (2003) Science, 302, pp. 1772-1775
  • Fortin, D.L., Neural activity controls the synaptic accumulation of alpha-synuclein (2005) J. Neurosci, 25, pp. 10913-10921
  • Pandey, N., Schmidt, R.E., Galvin, J.E., The alpha-synuclein mutation E46K promotes aggregation in cultured cells (2006) Exp. Neurol, 197, pp. 515-520
  • McLean, P.J., Kawamata, H., Hyman, B.T., Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons (2001) Neuroscience, 104, pp. 901-912
  • Adams, S.R., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications (2002) J. Am. Chem. Soc, 124, pp. 6063-6076
  • Gaietta, G., Multicolor and electron microscopic imaging of connexin trafficking (2002) Science, 296, pp. 503-507
  • Arhel, N., Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes (2006) Nat. Methods, 3, pp. 817-824
  • Martin, B.R., Giepmans, B.N., Adams, S.R., Tsien, R.Y., Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity (2005) Nat. Biotechnol, 23, pp. 1308-1314
  • Croisier, E., Comparative study of commercially available anti-alpha-synuclein antibodies (2006) Neuropathol. Appl. Neurobiol, 32, pp. 351-356
  • Heise, H., Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 15871-15876
  • Malik, Z., Fourier transform multipixel spectroscopy and spectral imaging for quantitative cytology (1996) J. Microsc, 182, pp. 133-140
  • Fernandez, C.O., NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation (2004) EMBO J, 23, pp. 2039-2046
  • Matsuzaki, M., Histochemical features of stress-induced aggregates in alpha-synuclein overexpressing cells (2004) Brain Res, 1004, pp. 83-90
  • Jares-Erijman, E.A., Jovin, T.M., Imaging molecular interactions in living cells by FRET microscopy (2006) Curr. Opin. Chem. Biol, 10, pp. 409-416
  • Egner, A., Hell, S.W., Fluorescence microscopy with super-resolved optical sections (2005) Trends Cell Biol, 15, pp. 207-215
  • Spagnuolo, C.C., Vermeij, R.J., Jares-Erijman, E.A., Improved photostable FRET-competent biarsenical-tetracysteine probes based on fluorinated fluoresceins (2006) J. Am. Chem. Soc, 128, pp. 12040-12041

Citas:

---------- APA ----------
Roberti, M.J., Bertoncini, C.W., Klement, R., Jares-Erijman, E.A. & Jovin, T.M. (2007) . Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein. Nature Methods, 4(4), 345-351.
http://dx.doi.org/10.1038/nmeth1026
---------- CHICAGO ----------
Roberti, M.J., Bertoncini, C.W., Klement, R., Jares-Erijman, E.A., Jovin, T.M. "Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein" . Nature Methods 4, no. 4 (2007) : 345-351.
http://dx.doi.org/10.1038/nmeth1026
---------- MLA ----------
Roberti, M.J., Bertoncini, C.W., Klement, R., Jares-Erijman, E.A., Jovin, T.M. "Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein" . Nature Methods, vol. 4, no. 4, 2007, pp. 345-351.
http://dx.doi.org/10.1038/nmeth1026
---------- VANCOUVER ----------
Roberti, M.J., Bertoncini, C.W., Klement, R., Jares-Erijman, E.A., Jovin, T.M. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein. Nat. Methods. 2007;4(4):345-351.
http://dx.doi.org/10.1038/nmeth1026