Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Alternative splicing (AS) allows the production of multiple mRNA variants from a single gene, which contributes to increase the complexity of the proteome. There is evidence that AS is regulated not only by auxiliary splicing factors, but also by components of the core spliceosomal machinery, as well as through epigenetic modifications. However, to what extent these different mechanisms contribute to the regulation of AS in response to endogenous or environmental stimuli is still unclear. Circadian clocks allow organisms to adjust physiological processes to daily changes in environmental conditions. Here we review recent evidence linking circadian clock and AS, and discuss the role of Protein Arginine Methyltransferase 5 (PRMT5) in these processes. We propose that the interactions between daily oscillations in AS and circadian rhythms in the expression of splicing factors and epigenetic regulators offer a great opportunity to dissect the contribution of these mechanisms to the regulation of AS in a physiologically relevant context. © 2011 Landes Bioscience.

Registro:

Documento: Artículo
Título:Alternative splicing at the right time
Autor:Sanchez, S.E.; Petrillo, E.; Kornblihtt, A.R.; Yanovsky, M.J.
Filiación:Instituto Leloir, IIBBA-CONICET, C1405BWE, Buenos Aires, Argentina
IFIBYNE, FCEyN, UBA-CONICET, Buenos Aires, Argentina
Palabras clave:Alternative splicing; Arabidopsis thaliana; Circadian clock; PRMT5; Transcriptional and post-transcriptional regulation; messenger RNA; protein arginine methyltransferase; protein arginine methyltransferase 5; proteome; unclassified drug; Arabidopsis protein; Dart5 protein, Drosophila; Drosophila protein; PRMT5 protein, Arabidopsis; protein arginine methyltransferase; protein methyltransferase; alternative RNA splicing; circadian rhythm; epigenetics; genetic variability; nonhuman; note; oscillation; regulatory mechanism; spliceosome; stimulus response; animal; Arabidopsis; biological model; circadian rhythm; Drosophila melanogaster; enzymology; genetics; metabolism; review; Arabidopsis thaliana; Alternative Splicing; Animals; Arabidopsis; Arabidopsis Proteins; Circadian Clocks; Drosophila melanogaster; Drosophila Proteins; Models, Genetic; Protein Methyltransferases; Protein-Arginine N-Methyltransferases
Año:2011
Volumen:8
Número:6
DOI: http://dx.doi.org/10.4161/rna.8.6.17336
Título revista:RNA Biology
Título revista abreviado:RNA Biology
ISSN:15476286
CAS:protein arginine methyltransferase; Arabidopsis Proteins; Dart5 protein, Drosophila, 2.1.1.-; Drosophila Proteins; PRMT5 protein, Arabidopsis, 2.1.1.23; Protein Methyltransferases, 2.1.1.-; Protein-Arginine N-Methyltransferases, 2.1.1.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15476286_v8_n6_p_Sanchez

Referencias:

  • Gallego, M., Virshup, D.M., Post-translational modifications regulate the ticking of the circadian clock (2007) Nature Reviews Molecular Cell Biology, 8 (2), pp. 139-148. , DOI 10.1038/nrm2106, PII NRM2106
  • Mehra, A., Baker, C.L., Loros, J.J., Dunlap, J.C., Post-translational modifications in circadian rhythms (2009) Trends in Biochemical Sciences, 34, pp. 483-490
  • Staiger, D., Koster, T., Spotlight on post-transcriptional control in the circadian system (2011) Cell Mol Life Sci, 68, pp. 71-83
  • Kojima, S., Shingle, D.L., Green, C.B., Post-transcriptional control of circadian rhythms (2011) J Cell Sci, 124, pp. 311-320
  • Kim, E., Magen, A., Ast, G., Different levels of alternative splicing among eukaryotes (2007) Nucleic Acids Research, 35 (1), pp. 125-131. , DOI 10.1093/nar/gkl924
  • Graveley, B.R., Alternative splicing: Increasing diversity in the proteomic world (2001) Trends in Genetics, 17 (2), pp. 100-107. , DOI 10.1016/S0168-9525(00)02176-4, PII S0168952500021764
  • Filichkin, S.A., Priest, H.D., Givan, S.A., Shen, R., Bryant, D.W., Fox, S.E., Genome-wide mapping of alternative splicing in Arabidopsis thaliana (2010) Genome Research, 20, pp. 45-58
  • Campbell, M.A., Haas, B.J., Hamilton, J.P., Mount, S.M., Buell, C.R., Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis (2006) BMC Genomics, 7, p. 327
  • De La Mata, M., Lafaille, C., Kornblihtt, A.R., First come, first served revisited: Factors affecting the same alternative splicing event have different effects on the relative rates of intron removal (2010) RNA, 16, pp. 904-912
  • Kornblihtt, A.R., De La, M.M., Fededa, J.P., Munoz, M.J., Nogues, G., Multiple links between transcription and splicing (2004) RNA, 10 (10), pp. 1489-1498. , DOI 10.1261/rna.7100104
  • Saltzman, A.L., Pan, Q., Blencowe, B.J., Regulation of alternative splicing by the core spliceosomal machinery (2011) Genes Dev, 25, pp. 373-384
  • Chen, M., Manley, J.L., Mechanisms of alternative splicing regulation: Insights from molecular and genomics approaches (2009) Nat Rev Mol Cell Biol, 10, pp. 741-754
  • Alexander, R., Beggs, J.D., Cross-talk in transcription, splicing and chromatin: Who makes the first call? (2010) Biochem Soc Trans, 38, pp. 1251-1256
  • Narlikar, G.J., Fan, H.-Y., Kingston, R.E., Cooperation between complexes that regulate chromatin structure and transcription (2002) Cell, 108 (4), pp. 475-487. , DOI 10.1016/S0092-8674(02)00654-2
  • Kouzarides, T., Chromatin Modifications and Their Function (2007) Cell, 128 (4), pp. 693-705. , DOI 10.1016/j.cell.2007.02.005, PII S0092867407001845
  • Berger, S.L., The complex language of chromatin regulation during transcription (2007) Nature, 447 (7143), pp. 407-412. , DOI 10.1038/nature05915, PII NATURE05915
  • Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R., Misteli, T., Epigenetics in Alternative Pre-mRNA Splicing (2011) Cell, 144, pp. 16-26
  • Majercak, J., Sidote, D., Hardin, P.E., Edery, I., How a circadian clock adapts to seasonal decreases in temperature and day length (1999) Neuron, 24 (1), pp. 219-230. , DOI 10.1016/S0896-6273(00)80834-X
  • Majercak, J., Chen, W.-F., Edery, I., Splicing of the period Gene 3′-Terminal Intron Is Regulated by Light, Circadian Clock Factors, and Phospholipase C (2004) Molecular and Cellular Biology, 24 (8), pp. 3359-3372. , DOI 10.1128/MCB.24.8.3359-3372.2004
  • Collins, B.H., Rosato, E., Kyriacou, C.P., Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (7), pp. 1945-1950. , DOI 10.1073/pnas.0308240100
  • Low, K.H., Lim, C., Ko, H.W., Edery, I., Natural Variation in the Splice Site Strength of a Clock Gene and Species-Specific Thermal Adaptation (2008) Neuron, 60, pp. 1054-1067
  • Colot, H.V., Loros, J.J., Dunlap, J.C., Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency (2005) Molecular Biology of the Cell, 16 (12), pp. 5563-5571. , DOI 10.1091/mbc.E05-08-0756
  • Alabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P., Kay, S.A., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock (2001) Science, 293 (5531), pp. 880-883. , DOI 10.1126/science.1061320
  • Farre, E.M., Kay, S.A., PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis (2007) Plant Journal, 52 (3), pp. 548-560. , DOI 10.1111/j.1365-313X.2007.03258.x
  • Lynch, M., Conery, J.S., The evolutionary fate and consequences of duplicate genes (2000) Science, 290, pp. 1151-1155
  • Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, M., Uberbacher, E., The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) (2006) Science, 313 (5793), pp. 1596-1604. , DOI 10.1126/science.1128691
  • Schoning, J.C., Streitner, C., Meyer, I.M., Gao, Y., Staiger, D., Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis (2008) Nucl Acids Res, 36, pp. 6977-6987
  • Schoning, J.C., Streitner, C., Page, D.R., Hennig, S., Uchida, K., Wolf, E., Furuya, M., Staiger, D., Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation (2007) Plant Journal, 52 (6), pp. 1119-1130. , DOI 10.1111/j.1365-313X.2007.03302.x
  • Hazen, S., Naef, F., Quisel, T., Gendron, J., Chen, H., Ecker, J., Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays (2009) Genome Biol, 10, p. 17
  • Sanchez, S.E., Petrillo, E., Beckwith, E.J., Zhang, X., Rugnone, M.L., Hernando, C.E., A methyl transferase links the circadian clock to the regulation of alternative splicing (2010) Nature, 468, pp. 112-116
  • Bedford, M.T., Clarke, S.G., Protein Arginine Methylation in Mammals: Who, What and Why (2009) Molecular Cell, 33, pp. 1-13
  • Yan, D., Zhang, Y., Niu, L., Yuan, Y., Cao, X., Identification and characterization of two closely related histone H4 arginine 3 methyltransferases in Arabidopsis thaliana (2007) Biochemical Journal, 408 (1), pp. 113-121. , DOI 10.1042/BJ20070786
  • Niu, L., Zhang, Y., Pei, Y., Liu, C., Cao, X., Redundant requirement for a pair of Protein Arginine Methyltransferase4 homologs for the proper regulation of Arabidopsis flowering time (2008) Plant Physiology, 148 (1), pp. 490-503. , http://www.plantphysiol.org/cgi/reprint/148/1/490, DOI 10.1104/pp.108.124727
  • Niu, L., Lu, F., Pei, Y., Liu, C., Cao, X., Regulation of flowering time by the protein arginine methyltransferase AtPRMT10 (2007) EMBO Reports, 8 (12), pp. 1190-1195. , DOI 10.1038/sj.embor.7401111, PII 7401111
  • Scebba, F., De Bastiani, M., Bernacchia, G., Andreucci, A., Galli, A., Pitto, L., PRMT11: A new Arabidopsis MBD7 protein partner with arginine methyltransferase activity (2007) Plant Journal, 52 (2), pp. 210-222. , DOI 10.1111/j.1365-313X.2007.03238.x
  • Wang, X., Zhang, Y., Ma, Q., Zhang, Z., Xue, Y., Bao, S., Chong, K., SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis (2007) EMBO Journal, 26 (7), pp. 1934-1941. , DOI 10.1038/sj.emboj.7601647, PII 7601647
  • Pei, Y., Niu, L., Lu, F., Liu, C., Zhai, J., Kong, X., Cao, X., Mutations in the type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis (2007) Plant Physiology, 144 (4), pp. 1913-1923. , http://www.plantphysiol.org/cgi/reprint/144/4/1913, DOI 10.1104/pp.107.099531
  • Hong, S., Song, H.R., Lutz, K., Kerstetter, R.A., Michael, T.P., McClung, C.R., Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana (2010) Proc Natl Acad Sci USA, 107, pp. 21211-21216
  • Matsushika, A., Imamura, A., Yamashino, T., Mizuno, T., Aberrant expression of the light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana (2002) Plant and Cell Physiology, 43 (8), pp. 833-843
  • Zhang, Z., Zhang, S., Zhang, Y., Wang, X., Li, D., Li, Q., Arabidopsis Floral Initiator SKB1 Confers High Salt Tolerance by Regulating Transcription and Pre-mRNA Splicing through Altering Histone H4R3 and Small Nuclear Ribonucleoprotein LSM4 Methylation (2011) Plant Cell, 23, pp. 396-411
  • Deng, X., Gu, L., Liu, C., Lu, T., Lu, F., Lu, Z., Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing (2010) Proc Natl Acad Sci USA, 107, pp. 19114-19119
  • Dacwag, C.S., Ohkawa, Y., Pal, S., Sif, S., Imbalzano, A.N., The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling (2007) Molecular and Cellular Biology, 27 (1), pp. 384-394. , DOI 10.1128/MCB.01528-06
  • Schmitz, R.J., Sung, S., Amasino, R.M., Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (2), pp. 411-416. , http://www.pnas.org/cgi/reprint/105/2/411, DOI 10.1073/pnas.0710423104
  • Chari, A., Fischer, U., Cellular strategies for the assembly of molecular machines (2010) Trends in Biochemical Sciences, 35, pp. 676-683
  • Boon, K.-L., Grainger, R.J., Ehsani, P., Barrass, J.D., Auchynnikava, T., Inglehearn, C.F., Beggs, J.D., Prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast (2007) Nature Structural and Molecular Biology, 14 (11), pp. 1077-1083. , DOI 10.1038/nsmb1303, PII NSMB1303
  • Zhang, D., Rosbash, M., Identification of eight proteins that cross-link to pre-mRNA in the yeast commitment complex (1999) Genes and Development, 13 (5), pp. 581-592
  • Ptitsyn, A., Gimble, J., Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway (2007) BMC Bioinformatics, 8, p. 15
  • Janssen, T., Husson, S.J., Lindemans, M., Mertens, I., Rademakers, S., Donck, K.V., Functional Characterization of Three G Protein-coupled Receptors for Pigment Dispersing Factors in Caenorhabditis elegans (2008) Journal of Biological Chemistry, 283, pp. 15241-15249
  • Staiger, D., Zecca, L., Wieczorek, K.D.A., Apel, K., Eckstein, L., The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA (2003) Plant Journal, 33 (2), pp. 361-371. , DOI 10.1046/j.1365-313X.2003.01629.x
  • Zhang, N., Kallis, R.P., Ewy, R.G., Portis Jr., A.R., Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (5), pp. 3330-3334. , DOI 10.1073/pnas.042529999

Citas:

---------- APA ----------
Sanchez, S.E., Petrillo, E., Kornblihtt, A.R. & Yanovsky, M.J. (2011) . Alternative splicing at the right time. RNA Biology, 8(6).
http://dx.doi.org/10.4161/rna.8.6.17336
---------- CHICAGO ----------
Sanchez, S.E., Petrillo, E., Kornblihtt, A.R., Yanovsky, M.J. "Alternative splicing at the right time" . RNA Biology 8, no. 6 (2011).
http://dx.doi.org/10.4161/rna.8.6.17336
---------- MLA ----------
Sanchez, S.E., Petrillo, E., Kornblihtt, A.R., Yanovsky, M.J. "Alternative splicing at the right time" . RNA Biology, vol. 8, no. 6, 2011.
http://dx.doi.org/10.4161/rna.8.6.17336
---------- VANCOUVER ----------
Sanchez, S.E., Petrillo, E., Kornblihtt, A.R., Yanovsky, M.J. Alternative splicing at the right time. RNA Biology. 2011;8(6).
http://dx.doi.org/10.4161/rna.8.6.17336