Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Assessment of surgical risk in patients undergoing pulmonary resection is a fundamental goal for thoracic surgeons. Commonly available risk scores do not predict the individual outcome. Data mining and artificial neural networks are artificial intelligence mathematical models that have been used for estimation of prognosis in different clinical scenarios. When used to assess the surgical risk, they can integrate results from multiple data by predicting the individual outcome for patients rather than assigning them to less precise risk group categories. © 2007 Elsevier Inc. All rights reserved.


Documento: Artículo
Título:Neural Networks and Artificial Intelligence in Thoracic Surgery
Autor:Esteva, H.; Núñez, T.G.; Rodríguez, R.O.
Filiación:Division of Thoracic Surgery, Hospital de Clínicas, Universidad de Buenos Aires, Av. San Martín 1039, (1661) Bella Vista. Provincia de Buenos Aires, Argentina
Department of Computer Science, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon I, Intendente Guiraldes 2160, Ciudad Univ., 1428 Buenos Aires, Argentina
Palabras clave:artificial intelligence; artificial neural network; comorbidity; data mining; lung resection; medical practice; outcome assessment; priority journal; prognosis; review; risk assessment; scoring system; surgical risk; surgical technique; thorax surgery; treatment planning; Artificial Intelligence; Humans; Neural Networks (Computer); Surgery, Computer-Assisted; Thoracic Diseases; Thoracic Surgical Procedures; Treatment Outcome
Página de inicio:359
Página de fin:367
Título revista:Thoracic Surgery Clinics
Título revista abreviado:Thorac. Surg. Clin.


  • Torrington, K.G., Henderson, C.J., Perioperative respiratory therapy (PORT). A program of perioperative risk assessment and individualized postoperative care (1988) Chest, 95, pp. 947-951
  • Goldman, L., Caldera, D.L., Nussbaum, M., Multifactorial index of cardiac risk in noncardiac surgical procedures (1977) N Engl J Med, 297, pp. 845-850
  • Esteva, H., Luna, C.M., Loterzo, A., Predictive capacity of risk indices in pulmonary resections (1995) South Am J Thoracic Surg, 1, pp. 11-14
  • Vollmer, R.T., Multivariate statistical analysis for pathologists. Part I: the logistic model (1996) Am J Clin Pathol, 105, pp. 115-126
  • Bellotti, M., Elsner, B., Paes De Lima, A., Neural networks as a prognostic tool for patients with non-small cell carcinoma of the lung (1997) Mod Pathol, 10, pp. 1221-1227
  • Clancey, W.J., Shortliffe, E.H., (1984) Readings in medical artificial intelligence-The first decade, , Addison- Wesley, Reading (MA)
  • Mc Culloch, W.S., Pitts, W., A logical calculus of the ideas imminent in nervous activity (1943) Bull Math Biophys, 5, pp. 115-133
  • Coiera, E., (2003) Guide to health informatics. 2nd edition. part 8 capt 25, , Hodder Arnold Publication, Sydney
  • An, C.S., Petrovic, L.M., Reyter, I., The application of image analysis and neural network technology to the study of large-cell liver-cell dysplasia and hepatocellular carcinoma (1997) Hepatology, 26, pp. 1224-1231
  • Marchevsky, A.M., Patel, S., Wiley, K.J., Reasoning with uncertainty in Pathology: artificial neural networks and logistic regression as tools for prediction of survival in Stage I and II non-small cell lung cancer patients (1998) Mod Pathol, 11, pp. 618-625
  • Mango, L.J., Computer-assisted cervical cancer screening using neural networks (1994) Cancer Lett, 77, pp. 155-162
  • Rosenthal, D.L., Acosta, D., Peters, R.K., Computer-assisted rescreening of clinically important false negative cervical smears using the PAPNET Testing System (1996) Acta Cytol, 40, pp. 120-126
  • Xu, X.W., Doi, K., Kobayashi, T., Development of an improved CAD scheme for automated detection of lung nodules in digital chest images (1997) Med Phys, 24, pp. 1395-1403
  • Fogel, D.B., Wasson, E.C., Boughton, E.M., Evolving artificial neural networks for screening features from mammograms (1998) Artif Intell Med, 14, pp. 317-326
  • Turton, E.P., Scott, D.J., Delbridge, M., Ruptured abdominal aortic aneurysm: a novel method of outcome prediction using neural network technology (2000) Eur J Vasc Endovasc Surg, 19, pp. 184-189
  • Segal, M.E., Goodman, P.H., Goldstein, R., The accuracy of artificial neural networks in predicting long-term outcome after traumatic brain injury (2006) J Head Trauma Rehabil, 21, pp. 298-314
  • Arle, J.E., Perrine, K., Devinsky, O., Neural network analysis of preoperative variables and outcome in epilepsy surgery (1999) J Neurosurg, 90, pp. 998-1004
  • Parmanto, B., Doyle, H.R., Recurrent neural networks for predicting outcomes after liver transplantation: representing temporal sequence of clinical observations (2001) Methods Inf Med, 40, pp. 386-391
  • Lippmann, R.P., Shahian, D.M., Coronary artery by-pass risk prediction using neural networks (1997) Ann Thorac Surg, 63, pp. 1635-1643
  • Fayad, U., Piatetsky-Shapiro, G., Smyth, P., "From data mining to knowledge discovery in databases" (1996) AI Magazine, 17, pp. 37-54
  • Lavrac, N., Data mining in medicine: selected techniques and applications (1999) Artif Intell Med, 16, pp. 3-23
  • Werbos, P., (1974) Beyond regression: new tools for prediction and analysis in the behavioral sciences, , Harvard University Department of Applied Mathematics, Cambridge (MA)
  • Kohonen, T., (1997) Associative memory: a system theoretic approach, , Springer, New York
  • Hopefield, J.J., Neural networks and physical systems with emerging collective computational abilities (1982) Proc Natl Acad Sci U S A, 81, pp. 3088-3092
  • Drew, P.J., Monson, J.R., Artificial neural networks (2000) Surgery, 127, pp. 3-11
  • Cross, S.S., Harrison, R.F., Kennedy, R.L., Introduction to neural networks (1995) Lancet, 346, pp. 1075-1079
  • Esteva, H., Bellotti, M., Marchevsky, A.M., Neural Networks for the estimation of prognosis in lung cancer (2001) Artificial Neural Networks in cancer diagnosis, prognosis and patient management, p. 29. , Naguib R.N.G., and Sherbet G.V. (Eds), CRC Press LLC, Boca Raton
  • Fletcher, J.M., Rice, W.J., Ray, R.M., Linear discriminant function analysis in neuropsychological research: Some uses and abuses (1978) Cortex, 14, pp. 564-565
  • Pass, H.I., Liu, Z., Wali, A., Gene expression profiles predict survival and progression of pleural mesothelioma (2004) Clin Cancer Res, 10, pp. 849-859
  • Poulakis, V., Witzsch, U., de Vries, R., Preoperative neural network using combined magnetic resonance imaging variables, prostate-specific antigen, and Gleason score for predicting prostate cancer biochemical recurrence after radical prostatectomy (2004) Urology, 64, pp. 1165-1170
  • Muers, M.F., Shevlin, P., Brown, J., Prognosis in lung cancer: physicians' opinion compared with outcome and a predictive model (1996) Thorax, 51, pp. 894-902
  • Batuello, J.T., Gamito, E.J., Crawford, E.D., Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer (2001) Urology, 57, pp. 481-485
  • Chong, C.F., Li, Y.C., Wang, T.L., Stratification of adverse outcomes by preoperative risk factors in coronary artery bypass graft patients: an artificial neural network prediction model (2003) AMIA Annu Symp Proc, pp. 160-164
  • Buzatu, D.A., Taylor, K.K., Peret, D.C., The determination of cardiac surgical risk using artificial neural networks (2001) J Surg Res, 95, pp. 61-66
  • Lapuerta, P., L'Italien, G.J., Paul, S., Neural network assessment of perioperative cardiac risk in vascular surgery patients (1998) Med Decis Making, 18, pp. 70-75
  • Nilsson, J., Ohlsson, M., Thulin, L., Risk factors identification and mortality prediction in cardiac surgery using artificial neural networks (2006) J Thorac Cardiovasc Surg, 132, pp. 12-19
  • Santos García, G., Varela, G., Novoa, N., Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble (2004) Artif Intell Med, 30, pp. 61-69
  • Esteva, H., Marchevsky, A., Nuñez, T., Neural networks as a prognostic tool of surgical risk in lung resections (2002) Ann Thorac Surg, 73, pp. 1576-1581
  • (2003) Prevención y Manejo de las Complicaciones de la Cirugía Torácica, , Esteva y colaboradores, Editorial EDUCA, Buenos Aires
  • Breinman, L., (1994) Bagging predictors, , Dpt of Statistics, University of California, Berkeley;


---------- APA ----------
Esteva, H., Núñez, T.G. & Rodríguez, R.O. (2007) . Neural Networks and Artificial Intelligence in Thoracic Surgery. Thoracic Surgery Clinics, 17(3), 359-367.
---------- CHICAGO ----------
Esteva, H., Núñez, T.G., Rodríguez, R.O. "Neural Networks and Artificial Intelligence in Thoracic Surgery" . Thoracic Surgery Clinics 17, no. 3 (2007) : 359-367.
---------- MLA ----------
Esteva, H., Núñez, T.G., Rodríguez, R.O. "Neural Networks and Artificial Intelligence in Thoracic Surgery" . Thoracic Surgery Clinics, vol. 17, no. 3, 2007, pp. 359-367.
---------- VANCOUVER ----------
Esteva, H., Núñez, T.G., Rodríguez, R.O. Neural Networks and Artificial Intelligence in Thoracic Surgery. Thorac. Surg. Clin. 2007;17(3):359-367.