Artículo

Beckwith, E.J.; Gorostiza, E.A.; Berni, J.; Rezával, C.; Pérez-Santángelo, A.; Nadra, A.D.; Ceriani, M.F. "Circadian Period Integrates Network Information Through Activation of the BMP Signaling Pathway" (2013) PLoS Biology. 11(12)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF) set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP) signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands. © 2013 Beckwith et al.

Registro:

Documento: Artículo
Título:Circadian Period Integrates Network Information Through Activation of the BMP Signaling Pathway
Autor:Beckwith, E.J.; Gorostiza, E.A.; Berni, J.; Rezával, C.; Pérez-Santángelo, A.; Nadra, A.D.; Ceriani, M.F.
Filiación:Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
Departamento de Química Biológica, UBA. IQUIBICEN-CONICET, Buenos Aires, Argentina
Laboratorio de Genómica Comparativa del Desarrollo Vegetal, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
Universität Regensburg, Institute of Zoology, Neurogenetics, Regensburg, Germany
Department of Zoology, University of Cambridge, Cambridge, United Kingdom
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
Palabras clave:bone morphogenetic protein; neuropeptide; pigment dispersing factor; transcription factor CLOCK; unclassified drug; animal behavior; animal cell; animal tissue; article; BMP gene; brain cell; brain function; cellular distribution; circadian rhythm; controlled study; Drosophila; gene; gene activation; gene cluster; gene expression regulation; gene function; gene identification; gene interaction; gene location; genetic conservation; genetic screening; locomotion; molecular clock; nerve cell network; neurotransmission; nonhuman; PDF gene; protein localization; protein protein interaction; running; signal transduction; transcription regulation; Animals; Bone Morphogenetic Proteins; Brain; Circadian Rhythm; CLOCK Proteins; Drosophila melanogaster; Drosophila Proteins; Motor Activity; Neurons; Signal Transduction
Año:2013
Volumen:11
Número:12
DOI: http://dx.doi.org/10.1371/journal.pbio.1001733
Título revista:PLoS Biology
Título revista abreviado:PloS Biol.
ISSN:15449173
CODEN:PBLIB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15449173_v11_n12_p_Beckwith

Referencias:

  • Hardin, P.E., Molecular genetic analysis of circadian timekeeping in Drosophila (2011) Adv Genet, 74, pp. 141-173
  • Sheeba, V., The Drosophila melanogaster circadian pacemaker circuit (2008) J Genet, 87, pp. 485-493
  • Ewer, J., Frisch, B., Hamblen-Coyle, M.J., Rosbash, M., Hall, J.C., Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms (1992) J Neurosci, 12, pp. 3321-3349
  • Helfrich-Forster, C., Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants (1998) J Comp Physiol A, 182, pp. 435-453
  • Renn, S.C., Park, J.H., Rosbash, M., Hall, J.C., Taghert, P.H., A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila (1999) Cell, 99, pp. 791-802
  • Peng, Y., Stoleru, D., Levine, J.D., Hall, J.C., Rosbash, M., Drosophila free-running rhythms require intercellular communication (2003) PLoS Biol, 1, pp. E13. , doi:10.1371/journal.pbio.0000013
  • Grima, B., Chelot, E., Xia, R., Rouyer, F., Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain (2004) Nature, 431, pp. 869-873
  • Stoleru, D., Peng, Y., Agosto, J., Rosbash, M., Coupled oscillators control morning and evening locomotor behaviour of Drosophila (2004) Nature, 431, pp. 862-868
  • Dubruille, R., Emery, P., A plastic clock: how circadian rhythms respond to environmental cues in Drosophila (2008) Mol Neurobiol, 38, pp. 129-145
  • Frenkel, L., Ceriani, M.F., Circadian plasticity: from structure to behavior (2011) Int Rev Neurobiol, 99, pp. 107-138
  • Fitzsimonds, R.M., Poo, M.M., Retrograde signaling in the development and modification of synapses (1998) Physiol Rev, 78, pp. 143-170
  • Sanyal, S., Kim, S.M., Ramaswami, M., Retrograde regulation in the CNS; neuron-specific interpretations of TGF-beta signaling (2004) Neuron, 41, pp. 845-848
  • Aberle, H., Haghighi, A.P., Fetter, R.D., McCabe, B.D., Magalhaes, T.R., wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila (2002) Neuron, 33, pp. 545-558
  • McCabe, B.D., Marques, G., Haghighi, A.P., Fetter, R.D., Crotty, M.L., The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction (2003) Neuron, 39, pp. 241-254
  • Marques, G., Bao, H., Haerry, T.E., Shimell, M.J., Duchek, P., The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function (2002) Neuron, 33, pp. 529-543
  • Marques, G., Zhang, B., Retrograde signaling that regulates synaptic development and function at the Drosophila neuromuscular junction (2006) Int Rev Neurobiol, 75, pp. 267-285
  • Veverytsa, L., Allan, D.W., Retrograde BMP signaling controls Drosophila behavior through regulation of a peptide hormone battery (2011) Development, 138, pp. 3147-3157
  • Eade, K.T., Allan, D.W., Neuronal phenotype in the mature nervous system is maintained by persistent retrograde bone morphogenetic protein signaling (2009) J Neurosci, 29, pp. 3852-3864
  • Moustakas, A., Heldin, C.H., The regulation of TGFbeta signal transduction (2009) Development, 136, pp. 3699-3714
  • Affolter, M., Basler, K., The Decapentaplegic morphogen gradient: from pattern formation to growth regulation (2007) Nat Rev Genet, 8, pp. 663-674
  • Weiss, A., Charbonnier, E., Ellertsdottir, E., Tsirigos, A., Wolf, C., A conserved activation element in BMP signaling during Drosophila development (2010) Nat Struct Mol Biol, 17, pp. 69-76
  • Tsuneizumi, K., Nakayama, T., Kamoshida, Y., Kornberg, T.B., Christian, J.L., Daughters against dpp modulates dpp organizing activity in Drosophila wing development (1997) Nature, 389, pp. 627-631
  • Baines, R.A., Synaptic strengthening mediated by bone morphogenetic protein-dependent retrograde signaling in the Drosophila CNS (2004) J Neurosci, 24, pp. 6904-6911
  • Blanchard, F.J., Collins, B., Cyran, S.A., Hancock, D.H., Taylor, M.V., The transcription factor Mef2 is required for normal circadian behavior in Drosophila (2010) J Neurosci, 30, pp. 5855-5865
  • Rezaval, C., Berni, J., Gorostiza, E.A., Werbajh, S., Fagilde, M.M., A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration (2008) PLoS One, 3, pp. e3332. , doi:10.1371/journal.pone.0003332
  • Arora, K., Dai, H., Kazuko, S.G., Jamal, J., O'Connor, M.B., The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family (1995) Cell, 81, pp. 781-790
  • Grieder, N.C., Nellen, D., Burke, R., Basler, K., Affolter, M., Schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1 (1995) Cell, 81, pp. 791-800
  • Staehling-Hampton, K., Laughon, A.S., Hoffmann, F.M., A Drosophila protein related to the human zinc finger transcription factor PRDII/MBPI/HIV-EP1 is required for dpp signaling (1995) Development, 121, pp. 3393-3403
  • Kaneko, M., Hall, J.C., Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections (2000) J Comp Neurol, 422, pp. 66-94
  • Marty, T., Muller, B., Basler, K., Affolter, M., Schnurri mediates Dpp-dependent repression of brinker transcription (2000) Nat Cell Biol, 2, pp. 745-749
  • Kula-Eversole, E., Nagoshi, E., Shang, Y., Rodriguez, J., Allada, R., Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila (2010) Proc Natl Acad Sci U S A, 107, pp. 13497-13502
  • Haerry, T.E., Khalsa, O., O'Connor, M.B., Wharton, K.A., Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in Drosophila (1998) Development, 125, pp. 3977-3987
  • Nellen, D., Burke, R., Struhl, G., Basler, K., Direct and long-range action of a DPP morphogen gradient (1996) Cell, 85, pp. 357-368
  • McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K., Davis, R.L., Spatiotemporal rescue of memory dysfunction in Drosophila (2003) Science, 302, pp. 1765-1768
  • Fernández, M.P., Berni, J., Ceriani, M.F., Circadian remodeling of neuronal circuits involved in rhythmic behavior (2008) PLoS Biol, 6, pp. e69. , doi:10.1371/journal.pbio.0060069
  • Meyer, P., Saez, L., Young, M.W., PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock (2006) Science, 311, pp. 226-229
  • Shafer, O.T., Rosbash, M., Truman, J.W., Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster (2002) J Neurosci, 22, pp. 5946-5954
  • Saez, L., Young, M.W., Regulation of nuclear entry of the Drosophila clock proteins period and timeless (1996) Neuron, 17, pp. 911-920
  • Curtin, K.D., Huang, Z.J., Rosbash, M., Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock (1995) Neuron, 14, pp. 365-372
  • Cai, Y., Laughon, A., The Drosophila Smad cofactor Schnurri engages in redundant and synergistic interactions with multiple corepressors (2009) Biochim Biophys Acta, 1789, pp. 232-245
  • Yang, Z., Sehgal, A., Role of molecular oscillations in generating behavioral rhythms in Drosophila (2001) Neuron, 29, pp. 453-467
  • Darlington, T.K., Wager-Smith, K., Ceriani, M.F., Staknis, D., Gekakis, N., Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim (1998) Science, 280, pp. 1599-1603
  • Kadener, S., Menet, J.S., Schoer, R., Rosbash, M., Circadian transcription contributes to core period determination in Drosophila (2008) PLoS Biol, 6, pp. e119. , doi:10.1371/journal.pbio.0060119
  • Zhao, J., Kilman, V.L., Keegan, K.P., Peng, Y., Emery, P., Drosophila clock can generate ectopic circadian clocks (2003) Cell, 113, pp. 755-766
  • Muller, B., Hartmann, B., Pyrowolakis, G., Affolter, M., Basler, K., Conversion of an extracellular Dpp/BMP morphogen gradient into an inverse transcriptional gradient (2003) Cell, 113, pp. 221-233
  • Gao, S., Steffen, J., Laughon, A., Dpp-responsive silencers are bound by a trimeric Mad-Medea complex (2005) J Biol Chem, 280, pp. 36158-36164
  • Yao, L.C., Blitz, I.L., Peiffer, D.A., Phin, S., Wang, Y., Schnurri transcription factors from Drosophila and vertebrates can mediate Bmp signaling through a phylogenetically conserved mechanism (2006) Development, 133, pp. 4025-4034
  • Gao, S., Laughon, A., Decapentaplegic-responsive silencers contain overlapping mad-binding sites (2006) J Biol Chem, 281, pp. 25781-25790
  • Pyrowolakis, G., Hartmann, B., Muller, B., Basler, K., Affolter, M., A simple molecular complex mediates widespread BMP-induced repression during Drosophila development (2004) Dev Cell, 7, pp. 229-240
  • Lim, C., Lee, J., Choi, C., Kilman, V.L., Kim, J., The novel gene twenty-four defines a critical translational step in the Drosophila clock (2011) Nature, 470, pp. 399-403
  • Gummadova, J.O., Coutts, G.A., Glossop, N.R., Analysis of the Drosophila Clock promoter reveals heterogeneity in expression between subgroups of central oscillator cells and identifies a novel enhancer region (2009) J Biol Rhythms, 24, pp. 353-367
  • Marques, G., Haerry, T.E., Crotty, M.L., Xue, M., Zhang, B., Retrograde Gbb signaling through the Bmp type 2 receptor wishful thinking regulates systemic FMRFa expression in Drosophila (2003) Development, 130, pp. 5457-5470
  • Allan, D.W., St Pierre, S.E., Miguel-Aliaga, I., Thor, S., Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code (2003) Cell, 113, pp. 73-86
  • Ewer, J., Behavioral actions of neuropeptides in invertebrates: insights from Drosophila (2005) Horm Behav, 48, pp. 418-429
  • Shafer, O.T., Taghert, P.H., RNA-interference knockdown of Drosophila pigment dispersing factor in neuronal subsets: the anatomical basis of a neuropeptide's circadian functions (2009) PLoS One, 4, pp. e8298. , doi:10.1371/journal.pone.0008298
  • Gorostiza, E.A., Ceriani, M.F., Retrograde bone morphogenetic protein signaling shapes a key circadian pacemaker circuit (2013) J Neurosci, 33, pp. 687-696
  • Abruzzi, K.C., Rodriguez, J., Menet, J.S., Desrochers, J., Zadina, A., Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression (2011) Genes Dev, 25, pp. 2374-2386
  • Rosbash, M., The implications of multiple circadian clock origins (2009) PLoS Biol, 7, pp. e62. , doi:10.1371/journal.pbio.1000062
  • Smith, R., Konopka, R., Effects of dosage alterations at the per locus on the period of the circadian clock of Drosophila (1982) Molecular and General Genetics, 185, pp. 30-36
  • Baylies, M.K., Bargiello, T.A., Jackson, F.R., Young, M.W., Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock (1987) Nature, 326, pp. 390-392
  • Rutila, J.E., Edery, I., Hall, J.C., Rosbash, M., The analysis of new short-period circadian rhythm mutants suggests features of D. melanogaster period gene function (1992) J Neurogenet, 8, pp. 101-113
  • Allada, R., Kadener, S., Nandakumar, N., Rosbash, M., A recessive mutant of Drosophila Clock reveals a role in circadian rhythm amplitude (2003) EMBO J, 22, pp. 3367-3375
  • Kim, E.Y., Bae, K., Ng, F.S., Glossop, N.R., Hardin, P.E., Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity (2002) Neuron, 34, pp. 69-81
  • Bae, K., Lee, C., Hardin, P.E., Edery, I., dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex (2000) J Neurosci, 20, pp. 1746-1753
  • Ling, J., Dubruille, R., Emery, P., KAYAK-alpha modulates circadian transcriptional feedback loops in Drosophila pacemaker neurons (2012) J Neurosci, 32, pp. 16959-16970
  • Muraro, N.I., Pirez, N., Ceriani, M.F., The circadian system: plasticity at many levels (2013) Neuroscience, 247, pp. 280-293
  • Lin, Y., Stormo, G.D., Taghert, P.H., The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system (2004) J Neurosci, 24, pp. 7951-7957
  • Yoshii, T., Wulbeck, C., Sehadova, H., Veleri, S., Bichler, D., The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila's clock (2009) J Neurosci, 29, pp. 2597-2610
  • Welsh, D.K., Takahashi, J.S., Kay, S.A., Suprachiasmatic nucleus: cell autonomy and network properties (2010) Annu Rev Physiol, 72, pp. 551-577
  • Stanewsky, R., Frisch, B., Brandes, C., Hamblen-Coyle, M.J., Rosbash, M., Temporal and spatial expression patterns of transgenes containing increasing amounts of the Drosophila clock gene period and a lacZ reporter: mapping elements of the PER protein involved in circadian cycling (1997) J Neurosci, 17, pp. 676-696
  • Williams, J.A., Su, H.S., Bernards, A., Field, J., Sehgal, A., A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK (2001) Science, 293, pp. 2251-2256
  • Rosato, E., Kyriacou, C.P., Analysis of locomotor activity rhythms in Drosophila (2006) Nat Protoc, 1, pp. 559-568
  • Ceriani, M.F., Hogenesch, J.B., Yanovsky, M., Panda, S., Straume, M., Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior (2002) J Neurosci, 22, pp. 9305-9319
  • Depetris-Chauvin, A., Berni, J., Aranovich, E.J., Muraro, N.I., Beckwith, E.J., Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs (2011) Curr Biol, 21, pp. 1783-1793
  • Sholl, D.A., Dendritic organization in the neurons of the visual and motor cortices of the cat (1953) J Anat, 87, pp. 387-406

Citas:

---------- APA ----------
Beckwith, E.J., Gorostiza, E.A., Berni, J., Rezával, C., Pérez-Santángelo, A., Nadra, A.D. & Ceriani, M.F. (2013) . Circadian Period Integrates Network Information Through Activation of the BMP Signaling Pathway. PLoS Biology, 11(12).
http://dx.doi.org/10.1371/journal.pbio.1001733
---------- CHICAGO ----------
Beckwith, E.J., Gorostiza, E.A., Berni, J., Rezával, C., Pérez-Santángelo, A., Nadra, A.D., et al. "Circadian Period Integrates Network Information Through Activation of the BMP Signaling Pathway" . PLoS Biology 11, no. 12 (2013).
http://dx.doi.org/10.1371/journal.pbio.1001733
---------- MLA ----------
Beckwith, E.J., Gorostiza, E.A., Berni, J., Rezával, C., Pérez-Santángelo, A., Nadra, A.D., et al. "Circadian Period Integrates Network Information Through Activation of the BMP Signaling Pathway" . PLoS Biology, vol. 11, no. 12, 2013.
http://dx.doi.org/10.1371/journal.pbio.1001733
---------- VANCOUVER ----------
Beckwith, E.J., Gorostiza, E.A., Berni, J., Rezával, C., Pérez-Santángelo, A., Nadra, A.D., et al. Circadian Period Integrates Network Information Through Activation of the BMP Signaling Pathway. PloS Biol. 2013;11(12).
http://dx.doi.org/10.1371/journal.pbio.1001733