Artículo

Borgna, J.P.; de Leo, M.; Rial, D.; de La Vega, C.S. "General splitting methods for abstract semilinear evolution equations" (2014) Communications in Mathematical Sciences. 13(1):83-101
Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we present a unified picture concerning general splitting methods for solving a large class of semilinear problems: nonlinear Schrödinger, Schrödinger-Poisson, Gross- Pitaevskii equations, etc. This picture includes as particular instances known schemes such as Lie- Trotter, Strang, and Ruth-Yoshida. The convergence result is presented in suitable Hilbert spaces related to the time regularity of the solution and is based on Lipschitz estimates for the nonlinearity. In addition, with extra requirements both on the regularity of the initial datum and on the nonlinearity, we show the linear convergence of these methods. We finally mention that in some special cases in which the linear convergence result is known, the assumptions we made are less restrictive. © 2015 International Press.

Registro:

Documento: Artículo
Título:General splitting methods for abstract semilinear evolution equations
Autor:Borgna, J.P.; de Leo, M.; Rial, D.; de La Vega, C.S.
Filiación:Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, Los Polvorines, Buenos Aires, 1613, Argentina
IMAS - CONICET and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150 (1613), Los Polvorines, Buenos Aires, Argentina
Palabras clave:Lie-Trotter; Semilinear problems; Splitting integrators
Año:2014
Volumen:13
Número:1
Página de inicio:83
Página de fin:101
Título revista:Communications in Mathematical Sciences
Título revista abreviado:Commun. Math. Sci.
ISSN:15396746
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15396746_v13_n1_p83_Borgna

Referencias:

  • Bao, W., Shen, J., A fourth-order time-splitting Laguerre-Hermite pseudo-spectral method for Bose-Einstein condensates (2005) SIAM J. Sci. Comput., 6, pp. 2010-2028
  • Borgna, J.P., Degasperis, A., De Leo, M., Rial, D., Integrability of nonlinear wave equations and solvability of their initial value problem (2012) J. Math. Phys.,, 53, p. 043701
  • Bidegaray, B., Besse, C., Descombes, S., Order estimates in the time of splitting methods for the nonlinear Schrödinger equation (2002) SIAM J. Numer. Anal., 40, pp. 26-40
  • Cazenave, T., Haraux, A., An Introduction to Semilinear Evolutions Equations (1998), Oxford University Press, Clarendon; Descombes, S., Thalhammer, M., An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime (2010) BIT Numer. Math., 50 (4), pp. 729-749
  • Grébert, B., Faou, E., Paturel, E., Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part ii: Abstract splitting (2009) Numerische Mathematik, 114, pp. 459-490
  • Gauckler, L., Convergence of a split-step Hermite method for the Gross-Pitaevskii equation (2011) IMA J. Numer. Anal., 31, pp. 396-415
  • Jahnke, T., Lubich, C., Error bounds for exponential operator splitting (2000) BIT Numer. Math., 40 (4), pp. 735-744
  • De Leo, M., Rial, D., Well posedness and smoothing effect of Schrödinger-Poisson equation (2007) J. Math. Phys., 48 (9). , 093509-093509-15
  • Lubich, C., On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations (2008) Math. Comput, 77 (264), pp. 2141-2153
  • Liu, J., Order of convergence of splitting schemes for both deterministic and stochastic nonlinear Schrödinger equations (2013) SIAM J. Numer. Anal., 51 (4), pp. 1911-1932
  • Masaki, S., Energy solution to a Schrödinger-Poisson system in the two-dimensional whole space (2011) SIAM J. Math. Anal, 43 (6), pp. 2719-2731
  • Rauch, J., Keel, M., Hyperbolic equations and frequency interactions (1999) IAS/Park City Math Series, 5. , A.M.S., Providence
  • Tadmor, E., The exponential accuracy of Fourier and Chebyshev differencing methods (1986) SIAM J. Numer. Anal., 23 (1), pp. 1-10
  • Yoshida, H., Construction of higher order symplectic integrators (1990) Phys. Lett. A, 150, pp. 262-268

Citas:

---------- APA ----------
Borgna, J.P., de Leo, M., Rial, D. & de La Vega, C.S. (2014) . General splitting methods for abstract semilinear evolution equations. Communications in Mathematical Sciences, 13(1), 83-101.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15396746_v13_n1_p83_Borgna [ ]
---------- CHICAGO ----------
Borgna, J.P., de Leo, M., Rial, D., de La Vega, C.S. "General splitting methods for abstract semilinear evolution equations" . Communications in Mathematical Sciences 13, no. 1 (2014) : 83-101.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15396746_v13_n1_p83_Borgna [ ]
---------- MLA ----------
Borgna, J.P., de Leo, M., Rial, D., de La Vega, C.S. "General splitting methods for abstract semilinear evolution equations" . Communications in Mathematical Sciences, vol. 13, no. 1, 2014, pp. 83-101.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15396746_v13_n1_p83_Borgna [ ]
---------- VANCOUVER ----------
Borgna, J.P., de Leo, M., Rial, D., de La Vega, C.S. General splitting methods for abstract semilinear evolution equations. Commun. Math. Sci. 2014;13(1):83-101.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15396746_v13_n1_p83_Borgna [ ]