Artículo

Rorai, C.; Mininni, P.D.; Pouquet, A. "Stably stratified turbulence in the presence of large-scale forcing" (2015) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 92(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We perform two high-resolution direct numerical simulations of stratified turbulence for Reynolds number equal to Re≈25000 and Froude number, respectively, of Fr≈0.1 and Fr≈0.03. The flows are forced at large scale and discretized on an isotropic grid of 20483 points. Stratification makes the flow anisotropic and introduces two extra characteristic scales with respect to homogeneous isotropic turbulence: the buoyancy scale, LB, and the Ozmidov scale, oz. The former is related to the number of layers that the flow develops in the direction of gravity, and the latter is regarded as the scale at which isotropy is recovered. The values of LB and oz depend on the Froude number, and their absolute and relative amplitudes affect the repartition of energy among Fourier modes in ways that are not easy to predict. By contrasting the behavior of the two simulated flows we identify some surprising similarities: After an initial transient the two flows evolve towards comparable values of the kinetic and potential enstrophy and energy dissipation rate. This is the result of the Reynolds number being large enough in both flows for the Ozmidov scale to be resolved. When properly dimensionalized, the energy dissipation rate is compatible with atmospheric observations. Further similarities emerge at large scales: The same ratio between potential and total energy (≈0.1) is spontaneously selected by the flows, and slow modes grow monotonically in both regimes, causing a slow increase of the total energy in time. The axisymmetric total energy spectrum shows a wide variety of spectral slopes as a function of the angle between the imposed stratification and the wave vector. One-dimensional energy spectra computed in the direction parallel to gravity are flat from the forcing up to buoyancy scale. At intermediate scales a ∼k-3 parallel spectrum develops for the Fr≈0.03 run, whereas for weaker stratification, the saturation spectrum does not have enough scales to develop and instead one observes a power law compatible with Kolmogorov scaling. Finally, the spectrum of helicity is flat until LB, as observed in the nocturnal planetary boundary layer. © 2015 American Physical Society.

Registro:

Documento: Artículo
Título:Stably stratified turbulence in the presence of large-scale forcing
Autor:Rorai, C.; Mininni, P.D.; Pouquet, A.
Filiación:Nordita, Roslagstullsbacken 23, Stockholm, 106 91, Sweden
Departamento de Física, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Buenos Aires, 1428, Argentina
National Center for Atmospheric Research, P. O. Box 3000, Boulder, Colorado, 80307, United States
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-256, United States
Palabras clave:Boundary layers; Buoyancy; Energy dissipation; Fourier series; Froude number; Reynolds number; Spectroscopy; Turbulence; Atmospheric observations; Energy dissipation rate; Homogeneous isotropic turbulence; Kolmogorov scaling; Planetary boundary layers; Relative amplitude; Stratified turbulence; Total-energy spectrum; Atmospheric thermodynamics
Año:2015
Volumen:92
Número:1
DOI: http://dx.doi.org/10.1103/PhysRevE.92.013003
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v92_n1_p_Rorai

Referencias:

  • Lenschow, D.H., Lothon, M., Mayor, S.D., Sullivan, P.P., Canut, G., (2012) Bound. Lay. Meterol., 143, p. 107
  • Rorai, C., Mininni, P.D., Pouquet, A., (2014) Phys. Rev. e, 89, p. 043002
  • Marino, R., Mininni, P.D., Rosenberg, D.L., Pouquet, A., (2014) Phys. Rev. e, 90, p. 023018
  • Riley, J., Lelong, M.-P., (2000) Ann. Rev. Fluid Mech., 32, p. 613
  • Staquet, C., Sommeria, J., (2002) Ann. Rev. Fluid Mech., 34, p. 559
  • McWilliams, J., (2004) Atmospheric Turbulence, pp. 35-49. , in, edited by E. Fedorovich, R. Rotunno, and B. Stevens (Cambridge University Press, Cambridge), pp
  • Sagaut, P., Cambon, C., (2008) Homogeneous Turbulence Dynamics, , (Cambridge University Press, Cambridge)
  • Waite, M.L., (2014) Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, pp. 159-175. , Direct numerical simulations of laboratory-scale stratified turbulence, In, edited by T. von Larcher and P. Williams, American Geophysical Union (Wiley & Sons), pp
  • Bartello, P., Tobias, S., (2013) J. Fluid Mech., 725, p. 1
  • Brethouwer, G., Billant, P., Lindborg, E., Chomaz, J.-M., (2007) J. Fluid Mech., 585, p. 343
  • Waite, M.L., (2011) Phys. Fluids, 23, p. 066602
  • Kimura, Y., Herring, J.R., (2012) J. Fluid Mech., 698, p. 19
  • Almalkie, S., De Bruyn Kops, S., (2012) J. Turbul., 13, p. 29
  • De Bruyn Kops, S., (2013), http://meetings.aps.org/link/BAPS.2013.DFD.A23.4, APS/DFD abstract; De Bruyn Kops, S., (unpublished); Fritts, D.C., Wang, L., Werne, J., (2009) Geophys. Res. Lett., 36, p. L19805
  • Chung, D., Matheou, G., (2012) J. Fluid Mech., 696, p. 434
  • Smith, L., Waleffe, F., (2002) J. Fluid Mech., 451, p. 145
  • Marino, R., Pouquet, A., Rosenberg, D., (2015) Phys. Rev. Lett., 114, p. 114504
  • Rosenberg, D., Pouquet, A., Marino, R., Mininni, P.D., (2015) Phys. Fluids, 27, p. 055105
  • Lindborg, E., Brethouwer, G., (2007) J. Fluid Mech., 586, p. 83
  • Shih, L., Koseff, J., Ivey, G., Ferziger, J., (2005) J. Fluid Mech., 525, p. 193
  • Ivey, G., Winters, K., Koseff, J., (2008) Ann. Rev. Fluid Mech., 40, p. 169
  • Weinstock, J., (1978) J. Atmos. Sci., 35, p. 634
  • Craya, A., (1958) Publ. Sci. Tech. Ministère de l'Air, 345
  • Herring, J.R., (1974) Phys. Fluids, 17, p. 859
  • Billant, P., Chomaz, J.-M., (2001) Phys. Fluids, 13, p. 1645
  • Métais, O., Herring, J., (1989) J. Fluid Mech., 202, p. 117
  • Godeferd, F., Cambon, C., (1994) Phys. Fluids, 6, p. 2084
  • McDougall, T.J., Greatbatch, R.J., Lu, Y., (2002) J. Phys. Oceanogr., 32, p. 1574
  • Rorai, C., Rosenberg, D., Pouquet, A., Mininni, P.D., (2013) Phys. Rev. e, 87, p. 063007
  • Mininni, P.D., Pouquet, A., (2009) Phys. Rev. e, 79, p. 026304
  • Teitelbaum, T., Mininni, P.D., (2009) Phys. Rev. Lett., 103, p. 014501
  • Hide, R., (1976) Geophys. Astrophys. Fluid Dyn., 7, p. 157
  • Marino, R., Mininni, P.D., Rosenberg, D., Pouquet, A., (2013) Phys. Rev. e, 87, p. 033016
  • Mininni, P.D., Rosenberg, D., Pouquet, A., (2012) J. Fluid Mech., 699, p. 263
  • Mininni, P.D., Rosenberg, D., Reddy, R., Pouquet, A., (2011) Parallel Comput., 37, p. 316
  • Pouquet, A., Patterson, G.S., (1978) J. Fluid Mech., 85, p. 305
  • Mininni, P.D., Alexakis, A., Pouquet, A., (2008) Phys. Rev. e, 77, p. 036306
  • Lindborg, E., (1999) J. Fluid Mech., 388, p. 259
  • Héas, P., Mémin, E., Heitz, D., Mininni, P.D., (2012) Tellus A, 64, p. 10962
  • Newell, A., Nazarenko, S., Biven, L., (2001) Physica D, 152-153, p. 520
  • Nazarenko, S., (2011) Wave Turbulence, , Vol. 825 (Springer-Verlag, Berlin)
  • Müller, P., Holloway, G., Henyey, F., Pomphrey, N., (1986) Rev. Geophys., 24, p. 493
  • Polzin, K., Lvov, Y., (2011) Rev. Geophys., 49, p. RG4003
  • Waleffe, F., (1993) Phys. Fluids A, 5, p. 677
  • Smith, L.M., Waleffe, F., (1999) Phys. Fluids, 11, p. 1608
  • Lvov, Y., Polzin, K., Tabak, E., Yokoyama, N., (2010) J. Phys. Oceano., 40, p. 2605
  • Carnevale, G., Briscolini, M., Orlandi, P., (2001) J. Fluid Mech., 427, p. 205
  • Koprov, B., Koprov, V., Ponomarev, V., Chkhetiani, O., (2005) Dokl. Phys., 50, p. 419

Citas:

---------- APA ----------
Rorai, C., Mininni, P.D. & Pouquet, A. (2015) . Stably stratified turbulence in the presence of large-scale forcing. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 92(1).
http://dx.doi.org/10.1103/PhysRevE.92.013003
---------- CHICAGO ----------
Rorai, C., Mininni, P.D., Pouquet, A. "Stably stratified turbulence in the presence of large-scale forcing" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 92, no. 1 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.013003
---------- MLA ----------
Rorai, C., Mininni, P.D., Pouquet, A. "Stably stratified turbulence in the presence of large-scale forcing" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 92, no. 1, 2015.
http://dx.doi.org/10.1103/PhysRevE.92.013003
---------- VANCOUVER ----------
Rorai, C., Mininni, P.D., Pouquet, A. Stably stratified turbulence in the presence of large-scale forcing. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2015;92(1).
http://dx.doi.org/10.1103/PhysRevE.92.013003