Abstract:
We present an analytic expression for the heat current through a general harmonic network coupled with Ohmic reservoirs. We use a method that enables us to express the stationary state of the network in terms of the eigenvectors and eigenvalues of a generalized cubic eigenvalue problem. In this way, we obtain exact formulas for the heat current and the local temperature inside the network. Our method does not rely on the usual assumptions of weak coupling to the environments or on the existence of an infinite cutoff in the environmental spectral densities. We use this method to study nonequilibrium processes without the weak coupling and Markovian approximations. As a first application of our method, we revisit the problem of heat conduction in two- and three-dimensional crystals with binary mass disorder. We complement previous results showing that for small systems the scaling of the heat current with the system size greatly depends on the strength of the interaction between system and reservoirs. This somewhat counterintuitive result seems not to have been noticed before. © 2014 American Physical Society.
Registro:
Documento: |
Artículo
|
Título: | Analytic solution for heat flow through a general harmonic network |
Autor: | Freitas, N.; Paz, J.P. |
Filiación: | Departamento de Física, FCEyN, Ciudad Universitaria, Buenos Aires, 1428, Argentina Instituto de Física de Buenos Aires, UBA CONICET, Ciudad Universitaria, Pabellón 1, 1428 Buenos Aires, Argentina
|
Palabras clave: | Analytic solution; Flowthrough; Harmonic networks |
Año: | 2014
|
Volumen: | 90
|
Número: | 4
|
DOI: |
http://dx.doi.org/10.1103/PhysRevE.90.042128 |
Título revista: | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
|
Título revista abreviado: | Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
|
ISSN: | 15393755
|
CODEN: | PLEEE
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v90_n4_p_Freitas |
Referencias:
- Martinez, E.A., Paz, J.P., (2013) Phys. Rev. Lett., 110, p. 130406. , PRLTAO 0031-9007
- Paz, J.P., Zurek, W.H., (2002) Fundamentals of Quantum Information, pp. 77-148. , Springer, Berlin
- Caldeira, A.O., Leggett, A.J., (1983) Phys. A (Amsterdam, Neth.), 121, p. 587. , PHYADX 0378-4371
- Kosloff, R., (2013) Entropy, 15, p. 2100. , ENTRFG 1099-4300
- Viola, L., Knill, E., Lloyd, S., (1999) Phys. Rev. Lett., 82, p. 2417. , PRLTAO 0031-9007
- Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P., (1995) Phys. Rev. Lett., 75, p. 3788. , PRLTAO 0031-9007
- Kastoryano, M.J., Reiter, F., Sørensen, A.S., (2011) Phys. Rev. Lett., 106, p. 090502. , PRLTAO 0031-9007
- Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S., (2011) Phys. Rev. Lett., 107, p. 080503. , PRLTAO 0031-9007
- Muschik, C.A., Polzik, E.S., Ignacio Cirac, J., (2011) Phys. Rev. A, 83, p. 052312. , PLRAAN 1050-2947
- Hu, B.L., Paz, J.P., Zhang, Y., (1992) Phys. Rev. D, 45, p. 2843. , 0556-2821
- Rieder, Z., Lebowitz, J.L., Lieb, E., (1967) J. Math. Phys., 8, p. 1073. , JMAPAQ 0022-2488
- Chaudhuri, A., Kundu, A., Roy, D., Dhar, A., Lebowitz, J.L., Spohn, H., (2010) Phys. Rev. B, 81, p. 064301. , PRBMDO 1098-0121
- Dhar, A., Roy, D., (2006) J. Stat. Phys., 125, p. 801. , JSTPBS 0022-4715
- Matsuda, H., Ishii, K., (1970) Prog. Theor. Phys. Suppl., 45, p. 56. , PTPSAL 0375-9687
- Roy, D., Dhar, A., (2008) J. Stat. Phys., 131, p. 535. , JSTPBS 0022-4715
- Das, S.G., Dhar, A., (2012) Eur. Phys. J. B, 85, p. 372. , EPJBFY 1434-6028
- Tisseur, F., Meerbergen, K., (2001) SIAM Rev., 43, p. 235. , SIREAD 0036-1445
- Asadian, A., Manzano, D., Tiersch, M., Briegel, H.J., (2013) Phys. Rev. E, 87, p. 012109. , PLEEE8 1539-3755
- Nakazawa, H., (1970) Prog. Theor. Phys. Suppl., 45, p. 231. , PTPSAL 0375-9687
- Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Sorensen, D., (1999) LAPACK Users' Guide, , 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA)
- Van Der Walt, S., Colbert, S.C., Varoquaux, G., (2011) Computing in Science & Engineering, 13, p. 22
Citas:
---------- APA ----------
Freitas, N. & Paz, J.P.
(2014)
. Analytic solution for heat flow through a general harmonic network. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 90(4).
http://dx.doi.org/10.1103/PhysRevE.90.042128---------- CHICAGO ----------
Freitas, N., Paz, J.P.
"Analytic solution for heat flow through a general harmonic network"
. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 90, no. 4
(2014).
http://dx.doi.org/10.1103/PhysRevE.90.042128---------- MLA ----------
Freitas, N., Paz, J.P.
"Analytic solution for heat flow through a general harmonic network"
. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 90, no. 4, 2014.
http://dx.doi.org/10.1103/PhysRevE.90.042128---------- VANCOUVER ----------
Freitas, N., Paz, J.P. Analytic solution for heat flow through a general harmonic network. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014;90(4).
http://dx.doi.org/10.1103/PhysRevE.90.042128