Artículo

Rorai, C.; Mininni, P.D.; Pouquet, A. "Turbulence comes in bursts in stably stratified flows" (2014) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 89(4)
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

There is a clear distinction between simple laminar and complex turbulent fluids; however, in some cases, as for the nocturnal planetary boundary layer, a stable and well-ordered flow can develop intense and sporadic bursts of turbulent activity that disappear slowly in time. This phenomenon is ill understood and poorly modeled and yet it is central to our understanding of weather and climate dynamics. We present here data from direct numerical simulations of stratified turbulence on grids of 20483 points that display the somewhat paradoxical result of measurably stronger events for more stable flows, not only in the temperature and vertical velocity derivatives as commonplace in turbulence, but also in the amplitude of the fields themselves, contrary to what happens for homogenous isotropic turbulent flows. A flow visualization suggests that the extreme values take place in Kelvin-Helmoltz overturning events and fronts that develop in the field variables. These results are confirmed by the analysis of a simple model that we present. The model takes into consideration only the vertical velocity and temperature fluctuations and their vertical derivatives. It indicates that in stably stratified turbulence, the stronger bursts can occur when the flow is expected to be more stable. The bursts are generated by a rapid nonlinear amplification of energy stored in waves and are associated with energetic interchanges between vertical velocity and temperature (or density) fluctuations in a range of parameters corresponding to the well-known saturation regime of stratified turbulence. © 2014 American Physical Society.

Registro:

Documento: Artículo
Título:Turbulence comes in bursts in stably stratified flows
Autor:Rorai, C.; Mininni, P.D.; Pouquet, A.
Filiación:Nordita, Roslagstullsbacken 23, 106 91 Stockholm, Sweden
ICTP, Strada Costiera 11, 34151 Trieste, Italy
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053ABJ Buenos Aires, Argentina
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO 80309, United States
Palabras clave:Velocity; Isotropic turbulent flow; Nonlinear amplification; Planetary boundary layers; Stratified turbulence; Temperature fluctuation; Turbulent activity; Vertical derivatives; Vertical velocity; Turbulence
Año:2014
Volumen:89
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevE.89.043002
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v89_n4_p_Rorai

Referencias:

  • Antal, T., Droz, M., Györgyi, G., Ràcz, Z., (2001) Phys. Rev. Lett., 87, p. 240601. , PRLTAO 0031-9007 10.1103/PhysRevLett.87.240601
  • Bramwell, S.T., Christensen, K., Fortin, J.-Y., Holdsworth, P.C.W., Jensen, H.J., Lise, S., Lopez, J.M., Sellitto, M., (2000) Phys. Rev. Lett., 84, p. 3744. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.3744
  • Pumir, A., (1996) Phys. Fluids, 8, p. 3112. , PHFLE6 1070-6631 10.1063/1.869100
  • Paoletti, M.S., Fisher, M.E., Sreenivasan, K.R., Lathrop, D.P., (2008) Phys. Rev. Lett., 101, p. 154501. , PRLTAO 0031-9007 10.1103/PhysRevLett.101.154501
  • Baggaley, A.W., Barenghi, C.F., (2011) Phys. Rev. e, 84, p. 067301. , PLEEE8 1539-3755 10.1103/PhysRevE.84.067301
  • Capet, X., McWilliams, J., Molemaker, M., Shchepetkin, A., (2008) J. Phys. Oceanogr., 38, p. 29. , JPYOBT 0022-3670 10.1175/2007JPO3671.1
  • Liu, H.L., (2007) Geophys. Res. Lett., 34, pp. L08815. , 10.1029/2006GL028789
  • Marino, R., Sorriso-Valvo, L., Carbone, V., Veltri, P., Noullez, A., Bruno, R., (2011) Planet. Space Sci., 59, p. 592. , PLSSAE 0032-0633 10.1016/j.pss.2010.06.005
  • Marino, R., Sorriso-Valvo, L., D'Amicis, R., Carbone, V., Bruno, R., Veltri, P., (2012) Astrophys. J., 750, p. 41. , AJLEEY 0004-637X 10.1088/0004-637X/750/1/41
  • Manneville, P., (1990) Dissipative Structures and Weak Turbulence, , (Academic, Boston)
  • Eckhardt, B., Schneider, T., Hof, B., Westerweel, J., (2007) Annu. Rev. Fluid Mech., 39, p. 447. , ARVFA3 0066-4189 10.1146/annurev.fluid.39.050905.110308
  • Sun, J., Mahrt, L., Banta, R., Pichugina, Y., (2012) J. Atmos. Sci., 69, p. 338. , JAHSAK 0022-4928 10.1175/JAS-D-11-082.1
  • Finnigan, J., (1999) Bound. Layer Meteorol., 90, p. 529. , BLMEBR 0006-8314 10.1023/A:1001756912935
  • De Wiel, B.J.H.V., Moene, A., Jonker, H., (2012) J. Atmos. Sci., 69, p. 3097. , JAHSAK 0022-4928 10.1175/JAS-D-12-064.1
  • Drüe, C., Heinemann, G., (2007) Bound. Layer Meteorol., 124, p. 361. , BLMEBR 0006-8314 10.1007/s10546-007-9175-8
  • Stevens, B., Feingold, G., (2009) Nature (London), 461, p. 607. , NATUAS 0028-0836 10.1038/nature08281
  • Vieillefosse, P., (1982) J. Phys., 43, p. 837. , JOPQAG 0302-0738 10.1051/jphys:01982004306083700
  • Meneveau, C., (2011) Annu. Rev. Fluid Mech., 43, p. 219. , ARVFA3 0066-4189 10.1146/annurev-fluid-122109-160708
  • Polzin, K., Lvov, Y., (2011) Rev. Geophys., 49, pp. RG4003. , 8755-1209 10.1029/2010RG000329
  • Li, Y., Meneveau, C., (2006) J. Fluid Mech., 558, p. 133. , JFLSA7 0022-1120 10.1017/S002211200600005X
  • Li, Y., (2010) Physica D, 239, p. 1948. , PDNPDT 0167-2789 10.1016/j.physd.2010.07.007
  • Chong, M., Soria, J., Perry, A., Chacin, J., Cantwell, B., Nas, Y., (1998) J. Fluid Mech., 357, p. 225. , JFLSA7 0022-1120 10.1017/S0022112097008057
  • Weygand, J.M., Kivelson, M.G., Khurana, K.K., Schwarzl, H.K., Thompson, S.M., McPherron, R.L., Balogh, A., Borovsky, J., (2005) J. Geophys. Res., 110, pp. A01205. , D. A. Roberts,. 10.1029/2004JA010581
  • Mininni, P., Rosenberg, D., Reddy, R., Pouquet, A., (2011) Parallel Comput., 37, p. 316. , PACOEJ 0167-8191 10.1016/j.parco.2011.05.004
  • Kimura, Y., Herring, J.R., (2012) J. Fluid Mech., 698, p. 19. , JFLSA7 0022-1120 10.1017/jfm.2011.546
  • Rorai, C., Rosenberg, D., Pouquet, A., Mininni, P.D., (2013) Phys. Rev. e, 87, p. 063007. , PLEEE8 1539-3755 10.1103/PhysRevE.87.063007
  • Brethouwer, G., Billant, P., Lindborg, E., Chomaz, J.-M., (2007) J. Fluid Mech., 585, p. 343. , JFLSA7 0022-1120 10.1017/S0022112007006854
  • Petoukhov, V., Eliseev, A.V., Klein, R., Oesterle, H., (2008) Tellus, 60 A, p. 11. , 10.1111/j.1600-0870.2007.00276.x
  • Lenschow, D.H., Lothon, M., Mayor, S.D., Sullivan, P.P., Canut, G., (2012) Bound. Layer Meteorol., 143, p. 107. , BLMEBR 0006-8314 10.1007/s10546-011-9615-3
  • Capet, X., McWilliams, J., Molemaker, M., Shchepetkin, A., (2008) J. Phys. Oceanogr., 38, p. 44. , JPYOBT 0022-3670 10.1175/2007JPO3672.1
  • Gotoh, T., Fukayama, D., Nakano, T., (2002) Phys. Fluids, 14, p. 1065. , PHFLE6 1070-6631 10.1063/1.1448296
  • Billant, P., Chomaz, J.-M., (2001) Phys. Fluids, 13, p. 1645. , PHFLE6 1070-6631 10.1063/1.1369125
  • Bartello, P., Tobias, S., (2013) J. Fluid Mech., 725, p. 1. , JFLSA7 0022-1120 10.1017/jfm.2013.170
  • Mashayek, A., Caullfield, C.P., Peltier, W.R., (2013) J. Fluid Mech., 736, p. 570. , JFLSA7 0022-1120 10.1017/jfm.2013.551
  • Lindborg, E., (2006) J. Fluid Mech., 550, p. 207. , JFLSA7 0022-1120 10.1017/S0022112005008128
  • Falkovich, G., Fouxon, A., (2005) Phys. Rev. Lett., 94, p. 214502. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.214502
  • Lvov, Y.V., Nazarenko, S., (2004) Phys. Rev. e, 69, p. 066608. , PLEEE8 1539-3755 10.1103/PhysRevE.69.066608
  • Portelli, B., Holdsworth, P.C.W., Pinton, J.-F., (2003) Phys. Rev. Lett., 90, p. 104501. , PRLTAO 0031-9007 10.1103/PhysRevLett.90.104501
  • Fritts, D.C., Wang, L., Werne, J., (2009) Geophys. Res. Lett., 36, p. 396. , GPRLAJ 0094-8276 10.1029/2009GL039501
  • Pomeau, Y., Manneville, P., (1980) J. Phys., 41, p. 1235. , JOPQAG 0302-0738 10.1051/jphys:0198000410110123500
  • Sipos, M., Goldenfeld, N., (2011) Phys. Rev. e, 84, p. 035304. , (R). PLEEE8 1539-3755 10.1103/PhysRevE.84.035304
  • Coles, D., (1965) J. Fluid Mech., 21, p. 385. , JFLSA7 0022-1120 10.1017/S0022112065000241
  • Palmer, T.N., (2012) Q. J. R. Meteorol. Soc., 138, p. 841. , QJRMAM 0035-9009 10.1002/qj.1923
  • Gryanik, V.M., Hartmann, J., Raasch, S., Schröter, M., (2005) J. Atmos. Sci., 62, p. 2632. , JAHSAK 0022-4928 10.1175/JAS3457.1
  • Molemaker, M., McWilliams, J., Capet, X., (2010) J. Fluid Mech., 654, p. 35. , JFLSA7 0022-1120 10.1017/S0022112009993272
  • Pouquet, A., Marino, R., (2013) Phys. Rev. Lett., 111, p. 234501. , PRLTAO 0031-9007 10.1103/PhysRevLett.111.234501

Citas:

---------- APA ----------
Rorai, C., Mininni, P.D. & Pouquet, A. (2014) . Turbulence comes in bursts in stably stratified flows. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 89(4).
http://dx.doi.org/10.1103/PhysRevE.89.043002
---------- CHICAGO ----------
Rorai, C., Mininni, P.D., Pouquet, A. "Turbulence comes in bursts in stably stratified flows" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 89, no. 4 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.043002
---------- MLA ----------
Rorai, C., Mininni, P.D., Pouquet, A. "Turbulence comes in bursts in stably stratified flows" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 89, no. 4, 2014.
http://dx.doi.org/10.1103/PhysRevE.89.043002
---------- VANCOUVER ----------
Rorai, C., Mininni, P.D., Pouquet, A. Turbulence comes in bursts in stably stratified flows. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014;89(4).
http://dx.doi.org/10.1103/PhysRevE.89.043002