Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Frequency modulation is a salient acoustic feature of birdsong. Its control is usually attributed to the activity of syringeal muscles, which affect the tension of the labia responsible for sound production. We use experimental and theoretical tools to test the hypothesis that for birds producing tonal sounds such as domestic canaries (Serinus canaria), frequency modulation is determined by both the syringeal tension and the air sac pressure. For different models, we describe the structure of the isofrequency curves, which are sets of parameters leading to sounds presenting the same fundamental frequencies. We show how their shapes determine the relative roles of syringeal tension and air sac pressure in frequency modulation. Finally, we report experiments that allow us to unveil the features of the isofrequency curves. © 2014 American Physical Society.

Registro:

Documento: Artículo
Título:Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension
Autor:Alonso, R.; Goller, F.; Mindlin, G.B.
Filiación:Department of Physics, University of Buenos Aires, Ciudad Universitaria, Pab I, cp 1428, Buenos Aires, Argentina
Department of Biology, University of Utah, Salt Lake City, UT 84112, United States
Palabras clave:Condensed matter physics; Physics; Acoustic features; Fundamental frequencies; Isofrequency curves; Motor control; Sac pressure; Sound frequency; Sound production; Frequency modulation; air sac; animal; biological model; computer simulation; lip; physiology; pressure; procedures; Serinus; skeletal muscle; sound detection; tensile strength; vocalization; Air Sacs; Animals; Canaries; Computer Simulation; Lip; Models, Biological; Muscle, Skeletal; Pressure; Sound Spectrography; Tensile Strength; Vocalization, Animal
Año:2014
Volumen:89
Número:3
DOI: http://dx.doi.org/10.1103/PhysRevE.89.032706
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v89_n3_p_Alonso

Referencias:

  • Overduin, S.A., D'Avella, A., Roh, J., Bizzi, E., Modulation of muscle synergy recruitment in primate grasping (2008) Journal of Neuroscience, 28 (4), pp. 880-892. , http://www.jneurosci.org/cgi/reprint/28/4/880, DOI 10.1523/JNEUROSCI.2869-07.2008
  • Tresch, M.C., Jarc, A., (2009) Curr. Opin. Neurobiol., 19, p. 601. , COPUEN 0959-4388 10.1016/j.conb.2009.09.002
  • Haruno, M., Wolpert, D.M., Kawato, M., MOSAIC Model for Sensorimotor Learning and Control (2001) Neural Computation, 13 (10), pp. 2201-2220. , DOI 10.1162/089976601750541778
  • Kelso, J.S., Tuller, B., Vatikiotis-Bateson, E., Fowler, C.A., (1984) J. Exp. Psychol. Hum. Percept. Perform., 10, p. 812. , JPHPDH 0096-1523 10.1037/0096-1523.10.6.812
  • Riede, T., Goller, F., (2010) Brain Language, 115, p. 69. , 0093-934X 10.1016/j.bandl.2009.11.003
  • Goller, F., Riede, T., (2013) J. Physiol. Paris, 107, p. 230. , 10.1016/j.jphysparis.2012.11.001
  • Goller, F., Suthers, R.A., (1996) J. Neurophysiol., 76, p. 287
  • Goller, F., Suthers, R.A., (1996) J. Neurophysiol., 75, p. 867
  • Larsen, O.N., Goller, F., (2002) J. Exp. Biol., 205, p. 25
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., (2003) Phys. Rev. e, 68, p. 041908. , 1063-651X 10.1103/PhysRevE.68.041908
  • Amador, A., Mindlin, G.B., Goller, F., (2008) J. Neurophysiol., 99, p. 2383. , JONEA4 0022-3077 10.1152/jn.01002.2007
  • Riede, T., Fisher, J.H., Goller, F., (2010) PloS One, 5, pp. e11368. , (6),. 1932-6203 10.1371/journal.pone.0011368
  • Sitt, J.D., Amador, A., Goller, F., Mindlin, G.B., (2008) Phys. Rev. e, 78, p. 011905. , PLEEE8 1539-3755 10.1103/PhysRevE.78.011905
  • Amador, A., Mindlin, G.B., (2008) Chaos, 18, p. 043123. , CHAOEH 1054-1500 10.1063/1.3041023
  • Strogatz, S.H., (2001) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, , (Perseus, Cambridge, MA)
  • Titze, I.R., (1988) J. Acoust. Soc. Am., 83, p. 1536. , JASMAN 0001-4966 10.1121/1.395910
  • Elemans, C.P.H., Larsen, O.N., Hoffmann, M.R., Van Leeuwen, J.L., Quantitative modelling of the biomechanics of the avian syrinx (2003) Animal Biology, 53 (2), pp. 183-193. , DOI 10.1163/157075603769700377
  • Gardner, T., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., (2001) Phys. Rev. Lett., 87, p. 208101. , 10.1103/PhysRevLett.87.208101
  • Amador, A., Perl, Y.S., Mindlin, G.B., Margoliash, D., (2013) Nature, 495, p. 59. , 10.1038/nature11967
  • Laje, R., Gardner, T.J., Mindlin, G.B., Neuromuscular control of vocalizations in birdsong: A model (2002) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 65 (5), pp. 051921/1-051921/8. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PLEEE8000065000005051921000001&idtype=cvips, DOI 10.1103/PhysRevE.65.051921, 051921
  • Laje, R., Mindlin, G.B., Modeling source-source and source-filter acoustic interaction in birdsong (2005) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72 (3), pp. 1-11. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRE:72, DOI 10.1103/PhysRevE.72.036218, 036218
  • Lucero, J.C., Schoentgen, J., (2013) Proceedings of Meetings on Acoustics, 19, p. 060165. , 10.1121/1.4798467
  • Trevisan, M.A., Mindlin, G.B., Goller, F., Nonlinear model predicts diverse respiratory patterns of birdsong (2006) Physical Review Letters, 96 (5), p. 058103. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.96.058103&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.96.058103
  • Alonso, L.M., Alliende, J.A., Goller, F., Mindlin, G.B., (2009) Phys. Rev. e, 79, p. 041929. , PLEEE8 1539-3755 10.1103/PhysRevE.79.041929
  • Beckers, G.J.L., Suthers, R.A., Ten Cate, C., Mechanisms of frequency and amplitude modulation in ring dove song (2003) Journal of Experimental Biology, 206 (11), pp. 1833-1843. , DOI 10.1242/jeb.00364
  • Amador, A., Margoliash, D., (2013) J. Neurosci., 33, p. 11136. , JNRSDS 0270-6474 10.1523/JNEUROSCI.5906-12.2013
  • Plummer, E.M., Goller, F., Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch (2008) Journal of Experimental Biology, 211 (1), pp. 66-78. , DOI 10.1242/jeb.011908
  • Brumm, H., Zollinger, A., (2011) Behaviour, 148, p. 1173. , BEHAA8 0005-7959 10.1163/000579511X605759
  • Zollinger, S.A., Podos, J., Nemeth, E., Goller, F., Brumm, H., (2012) Animal Behaviour, 84, pp. e1. , 10.1016/j.anbehav.2012.04.026

Citas:

---------- APA ----------
Alonso, R., Goller, F. & Mindlin, G.B. (2014) . Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 89(3).
http://dx.doi.org/10.1103/PhysRevE.89.032706
---------- CHICAGO ----------
Alonso, R., Goller, F., Mindlin, G.B. "Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 89, no. 3 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.032706
---------- MLA ----------
Alonso, R., Goller, F., Mindlin, G.B. "Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 89, no. 3, 2014.
http://dx.doi.org/10.1103/PhysRevE.89.032706
---------- VANCOUVER ----------
Alonso, R., Goller, F., Mindlin, G.B. Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014;89(3).
http://dx.doi.org/10.1103/PhysRevE.89.032706