Artículo

Teitelbaum, T.; Mininni, P.D. "Decay of Batchelor and Saffman rotating turbulence" (2012) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 86(6)
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum of the initial perturbations, associated with at least two canonical self-preserving solutions of the von Kármán-Howarth equation: the so-called Batchelor and Saffman spectra. The effect of long-range correlations in the decay of anisotropic flows is less clear, and recently it has been proposed that the decay rate of rotating turbulence may be independent of the large-scale spectrum of the initial perturbations. We analyze numerical simulations of freely decaying rotating turbulence with initial energy spectra ∼k4 (Batchelor turbulence) and ∼k2 (Saffman turbulence) and show that, while a self-similar decay can not be identified for the total energy, the decay is indeed affected by long-range correlations. The decay of two- and three-dimensional modes follows distinct power laws in each case, which are consistent with predictions derived from the anisotropic von Kármán-Howarth equation, and with conservation of anisotropic integral quantities by the flow evolution. © 2012 American Physical Society.

Registro:

Documento: Artículo
Título:Decay of Batchelor and Saffman rotating turbulence
Autor:Teitelbaum, T.; Mininni, P.D.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
NCAR, P.O. Box 3000, Boulder, CO 80307-3000, United States
Palabras clave:Anisotropic flows; Decay rate; Flow evolution; Homogeneous turbulence; Initial energy; Initial perturbation; Integral quantity; Long range correlations; Power-law; Rotating turbulence; Self-similar; Total energy; Anisotropy; Decay (organic)
Año:2012
Volumen:86
Número:6
DOI: http://dx.doi.org/10.1103/PhysRevE.86.066320
Título revista:Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Título revista abreviado:Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
ISSN:15393755
CODEN:PLEEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v86_n6_p_Teitelbaum

Referencias:

  • George, W.K., (1992) Phys. Fluids A, 4, p. 1492. , PFADEB 0899-8213 10.1063/1.858423
  • Krogstad, P.A., Davidson, P.A., (2011) J. Fluid Mech., 680, p. 417. , 0022-1120 10.1017/jfm.2011.169
  • Ishida, T., Davidson, P.A., Kaneda, Y., On the decay of isotropic turbulence (2006) Journal of Fluid Mechanics, 564, pp. 455-475. , DOI 10.1017/S0022112006001625, PII S0022112006001625
  • Batchelor, G.K., Proudman, I., (1956) Philos. Trans. R. Soc., A, 248, p. 369. , PTRMAD 1364-503X 10.1098/rsta.1956.0002
  • Saffman, P.G., (1967) J. Fluid Mech., 27, p. 581. , JFLSA7 0022-1120 10.1017/S0022112067000552
  • Saffman, P.G., (1967) Phys. Fluids, 10, p. 1349. , PHFLE6 1070-6631 10.1063/1.1762284
  • Davidson, P.A., (2009) J. Fluid Mech., 632, p. 329. , JFLSA7 0022-1120 10.1017/S0022112009007137
  • Landau, L.D., Lifshitz, E.M., (1959) Fluid Mechanics, , Pergamon, New York
  • Cambon, C., Jacquin, L., (1989) J. Fluid Mech., 202, p. 295. , JFLSA7 0022-1120 10.1017/S0022112089001199
  • Cambon, C., Mansour, N.N., Godeferd, F.S., Energy transfer in rotating turbulence (1997) Journal of Fluid Mechanics, 337, pp. 303-332. , DOI 10.1017/S002211209700493X
  • Bellet, F., Godeferd, F.S., Scott, J.F., Cambon, C., Wave turbulence in rapidly rotating flows (2006) Journal of Fluid Mechanics, 562, pp. 83-121. , DOI 10.1017/S0022112006000929, PII S0022112006000929
  • Davidson, P.A., (2010) J. Fluid Mech., 663, p. 268. , JFLSA7 0022-1120 10.1017/S0022112010003496
  • Okamoto, N., Davidson, P.A., Kaneda, Y., (2010) J. Fluid Mech., 651, p. 295. , JFLSA7 0022-1120 10.1017/S0022112009994137
  • Jacquin, L., Leuchter, O., Cambon, C., Mathieu, J., (1990) J. Fluid Mech., 220, p. 1. , JFLSA7 0022-1120 10.1017/S0022112090003172
  • Van Bokhoven, L.J.A., Clercx, H.J.H., Van Heijst, G.J.F., Trieling, R.R., (2009) Phys. Fluids, 21, p. 096601. , PHFLE6 1070-6631 10.1063/1.3197876
  • Lamriben, C., Cortet, P.-P., Moisy, F., (2011) Phys. Rev. Lett., 107, p. 024503. , PRLTAO 0031-9007 10.1103/PhysRevLett.107.024503
  • Staplehurst, P.J., Davidson, P.A., Dalziel, S.B., Structure formation in homogeneous freely decaying rotating turbulence (2008) Journal of Fluid Mechanics, 598, pp. 81-105. , DOI 10.1017/S0022112007000067, PII S0022112007000067
  • Baroud, C.N., Plapp, B.B., Swinney, H.L., She, Z.-S., Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows (2003) Physics of Fluids, 15 (8), pp. 2091-2104. , DOI 10.1063/1.1577120
  • Morize, C., Moisy, F., Energy decay of rotating turbulence with confinement effects (2006) Physics of Fluids, 18 (6), p. 065107. , DOI 10.1063/1.2212990
  • Moisy, F., Morize, C., Rabaud, M., Sommeria, J., (2011) J. Fluid Mech., 666, p. 5. , JFLSA7 0022-1120 10.1017/S0022112010003733
  • Yang, X., Domaradzki, J.A., Large eddy simulations of decaying rotating turbulence (2004) Physics of Fluids, 16 (11), pp. 4088-4104. , DOI 10.1063/1.1790452
  • Müller, W.C., Thiele, M., (2007) Europhys. Lett., 77, p. 34003. , EULEEJ 0295-5075 10.1209/0295-5075/77/34003
  • Van Bokhoven, L.J.A., Cambon, C., Liechtenstein, L., Godeferd, F.S., Clercx, H.J.H., (2008) J. Turbulence, 9, p. 1
  • Teitelbaum, T., Mininni, P.D., (2009) Phys. Rev. Lett., 103, p. 014501. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.014501
  • Bourouiba, L., Bartello, P., (2007) J. Fluid Mech., 587, p. 161. , JFLSA7 0022-1120 10.1017/S0022112007007124
  • Teitelbaum, T., Mininni, P.D., (2010) Phys. Scr., T, 142, p. 014003. , PHSTBO 0031-8949 10.1088/0031-8949/2010/T142/014003
  • Teitelbaum, T., Mininni, P.D., (2011) Phys. Fluids, 23, p. 065105. , PHFLE6 1070-6631 10.1063/1.3592325
  • Squires, K.D., Chasnov, J.R., Mansour, N.N., Cambon, C., (1994) Proceedings of the 74th Fluid Dynamics Symposium on Application of Direct and Large Eddy Simulation to Transition and Turbulence, Chania, Crete, Greece
  • Bourouiba, L., Straub, D.N., Waite, M.L., (2012) J. Fluid Mech., 690, p. 129. , JFLSA7 0022-1120 10.1017/jfm.2011.387
  • Thiele, M., Müller, W.-C., (2009) J. Fluid Mech., 637, p. 425. , JFLSA7 0022-1120 10.1017/S002211200999067X
  • Davidson, P.A., (2004) Turbulence: An Introduction for Scientists and Engineers, , Oxford University Press, Oxford, UK
  • Kolmogorov, A.N., (1941) Dokl. Akad. Nauk SSSR, 31, p. 538
  • Iroshnikov, P.S., (1963) Soviet Astronomy, 7, p. 566
  • Kraichnan, R.H., (1965) Phys. Fluids, 8, p. 1385. , PHFLE6 1070-6631 10.1063/1.1761412
  • Mininni, P.D., Alexakis, A., Pouquet, A., (2009) Phys. Fluids, 21, p. 015108. , PHFLE6 1070-6631 10.1063/1.3064122
  • Fox, S., Davidson, P.A., (2009) Phys. Fluids, 21, p. 125102. , PHFLE6 1070-6631 10.1063/1.3276294
  • Smith, L.M., Lee, Y., On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number (2005) Journal of Fluid Mechanics, 535, pp. 111-142. , DOI 10.1017/S0022112005004660
  • Baerenzung, J., Politano, H., Ponty, Y., Pouquet, A., Spectral modeling of turbulent flows and the role of helicity (2008) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (4), p. 046303. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.77.046303&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.77.046303
  • Baerenzung, J., Mininni, P.D., Pouquet, A., Politano, H., Ponty, Y., (2010) Phys. Fluids, 22, p. 025104. , PHFLE6 1070-6631 10.1063/1.3292008
  • Baerenzung, J., Rosenberg, D., Mininni, P.D., Pouquet, A., (2011) J. Atmos. Sci., 68, p. 2757. , JAHSAK 0022-4928 10.1175/2010JAS3445.1
  • Gomez, D.O., Mininni, P.D., Dmitruk, P., MHD simulations and astrophysical applications (2005) Advances in Space Research, 35 (5), pp. 899-907. , DOI 10.1016/j.asr.2005.02.099, PII S0273117705004734, Fundamentals of Space Environment Science
  • Craya, A., (1958) P. S. T. Ministère de l'Air, 345
  • Herring, J.R., (1974) Phys. Fluids, 17, p. 859. , PHFLE6 1070-6631 10.1063/1.1694822
  • Lee, J., (1979) Phys. Fluids, 22, p. 40. , PHFLE6 1070-6631 10.1063/1.862433
  • Cambon, C., Teesside, C., Jeandel, D., (1985) J. Mech. Theor. Appl., 4, p. 629
  • Mininni, P.D., Rosenberg, D., Pouquet, A., (2012) J. Fluid Mech., 699, p. 263. , JFLSA7 0022-1120 10.1017/jfm.2012.99
  • Mininni, P.D., (2011) Annu. Rev. Fluid Mech., 43, p. 377. , ARVFA3 0066-4189 10.1146/annurev-fluid-122109-160748
  • Cambon, C., Rubinstein, R., Godeferd, F.S., Advances in wave turbulence: Rapidly rotating flows (2004) New Journal of Physics, 6, pp. 1-29. , http://www.iop.org/EJ/abstract/1367-2630/6/1/073, DOI 10.1088/1367-2630/6/1/073, PII S1367263004757079

Citas:

---------- APA ----------
Teitelbaum, T. & Mininni, P.D. (2012) . Decay of Batchelor and Saffman rotating turbulence. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 86(6).
http://dx.doi.org/10.1103/PhysRevE.86.066320
---------- CHICAGO ----------
Teitelbaum, T., Mininni, P.D. "Decay of Batchelor and Saffman rotating turbulence" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 86, no. 6 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.066320
---------- MLA ----------
Teitelbaum, T., Mininni, P.D. "Decay of Batchelor and Saffman rotating turbulence" . Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 86, no. 6, 2012.
http://dx.doi.org/10.1103/PhysRevE.86.066320
---------- VANCOUVER ----------
Teitelbaum, T., Mininni, P.D. Decay of Batchelor and Saffman rotating turbulence. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2012;86(6).
http://dx.doi.org/10.1103/PhysRevE.86.066320